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Introduction

Context

Boiling flows involve both two-phase fluid mechanics and phase change process. They are present in a vast vari-
ety of heat exchangers from micro-heat-pipes to large industrial facilities. The use of boiling fluids is motivated
by the efficiency of the nucleate boiling regime to extract heat from a heated wall. Indeed, in boiling systems,
in addition to the single phase sensible heat transport, the latent heat transport plays a major role. Moreover, the
heat transfer process occurs at a quasi-constant temperature: the saturation temperature. In the nuclear industry,
phase change process are of interest mainly in the study of potential accidental scenarii, where phenomena like
the boiling crisis can occur. The improvement and control (mainly for safety reasons) of industrial facilities is
constrained by the understanding of the boiling process. Both large scale mechanisms (averaged bubbly flow)
and small scale mechanisms (at the scale of individual bubbles) play an important role in the boiling heat transfer
process, e.g. Carey [28]. As a consequence, the study of the boiling process is scientifically challenging.

The study of industrial configurations requires the use of large scale analysis tools of the boiling process.
The corresponding models are based on space and time averaged governing equations. As a consequence of this
averaging procedure, the models must be supplemented by closure laws to be solved. These specific closure laws
are generally based on experimental data. But these laws are often devoted to specific configurations and have a
limited range of validity, which limits the accuracy and versatility of their use. There is thus a need of closure
laws inherited from the study of the local scale phenomena. Experiments at the bubble scale are (i) complex
to set-up and (ii) difficult to analyze because of the difficulty to get local measurements. The use of direct
numerical simulation does not bear this latter limitation and is therefore a promising tool to get improved closure
laws. Direct numerical simulation takes into account the whole spectrum of space and time scales. Its use is
thus restricted by the computers’ limitations to length scales of the order of magnitude of the centimeter and
time scales of the order of magnitude of the second. As a consequence, it cannot be used directly for the study
of industrial configurations. Nevertheless, it can be used to study bubble scale phenomena and then to develop
validated larger scale models, for example dedicated to the boiling crisis.

Boiling crisis

The phenomenon Beyond a particular high value of the wall heat flux, called the critical heat flux, a transition
of the boiling regime suddently occurs: this is called the boiling crisis. This transition leads to a very fast and
very large increase of the wall temperature. This increase can eventually lead to the melting of the wall: this is
called the burnout. The physical mechanism at the origin of this transition is nowadays still not well understood.
Its understanding is in itself an interesting scientific challenge. Moreover, its consequence, namely the burnout,
can further lead to the destruction of the heat exchanger: boiling crisis must be thus avoided for safety reasons.
In this study, we focus on this particular phenomenon of the boiling process.

Study of the boiling crisis There is a long history of the study of the boiling crisis and several attempts have
been made to model its mechanisms. However, there is a lack of experimental evidence that could support any
of these theories. More generally, there is a large number of experimental efforts that need to be pursued in order
to have a clear understanding of the phenomenon, e.g. Sadavisan et al. [117]. In chapter 1, we study the current
understanding of the boiling crisis and identify the major physical mechanisms potentially involved. It leads us
to define a target problem to study: the possible transition in the bubble growth regime at high wall heat flux.
According to the physical mechanisms involved in this process, numerical simulation is proposed as the most
relevant tool. This intermediate conclusion motivates the developments made in the remainder of the study.



2 CONTENTS

A diffuse interface model for the numerical study of the boiling flows at the bubble scale

The goal of this part of the study is to develop a model that can be used as a numerical method for the computation
of boiling flows. The different numerical methods allowing the study of a bubble growth or more generally
of liquid-vapor flows with phase change at the bubble scale are presented and analyzed in chapter 2. Most
of the methods are based on the Gibbs theory of the interface: the interface is sharp, i.e. it is modeled as a
surface of discontinuity. The difficulties of the computation of boiling flows are related to the management of
the interface motion especially when phase change occurs. The methods based on diffuse interface models, for
which the interface is viewed as a volumetric transition layer, propose a thermodynamically consistent setting
of the computed governing equations, including the liquid-vapor interface dynamics. This induces numerical
methods that are easier to handle since, contrarily to the methods based on sharp interface models, no particular
treatment of the interface is required. However, the physical thickness of the interface transition layer is of the
order of magnitude of the Angstrbms as soon as the system is far from the critical conditions. As a consequence,
the direct use of the diffuse interface models is irrelevant for simulations of mechanisms at the bubble scale. We
thus turn our attention toward phase field methods. The thermodynamic model used in these methods is based
on the introduction of an additional abstract variable or internal parameter, called the phase field, to describe
multi-phase or multi-component systems, as introduced by Truskinovsky [136]. Existing phase field methods
are mainly devoted to the study of solid-liquid or solid-solid phase transitions. They allow to deal with an
artificial but thermodynamically consistent smearing of the interface. This latter property is attractive from both
modeling and computational points of view. However, the review of the existing models shows that there is a
need to derive a new formulation adapted to the study of the liquid-vapor transition.

In chapter 3, we first study the phase field thermodynamic model. We propose a constitutive form for the
thermodynamic potential that allows to control both the diffuse interface description and the bulk phase physical
properties. The structure of the interface for the planar and spherical symmetric two-phase equilibrium cases are
studied in chapters 3 and 4. In particular, it is shown that the description of spherical inclusions is consistent with
the Laplace theory. We then study dynamics and introduce dissipative processes in the model in chapter 5. We
thus derive the thermodynamically consistent set of governing equations that includes the model for the interface
dynamics. The set of governing equations is then studied in two theoretical configurations: the stability of
homogeneous states (see chapter 6) and the one-dimensional steady state phase change process (see chapter 7).
In particular, we study the equivalent sharp interface model and derive its kinetic relation that is a necessary
closure relation, e.g. Truskinovsky [134]. The use of this formalism provides a clear interpretation of the sharp
limit of phase field equations. Finally, in chapter 8, we present first computations and study the ability of the
model to be used for the study of bubble growth dynamics.



Chapter 1

Study of nucleate wall boiling near boiling
crisis conditions:
Toward a gain in understanding

Introduction

Boiling crisis (BC) is an instability of the heat transfer process between a hot wall and a boiling fluid that leads
to a sudden transition in the behavior of the boiling system. The consequences of this transition can lead to wall
damages (burnout). The efficiency and design of industrial heat exchangers using boiling fluids (and in particular
nuclear power plants for safety reasons) is therefore constrained by the fact that the BC phenomenon must not
occur to prevent the destruction of the facility, should it be partial. Despite more than 70 years of study, the
mechanism leading to the BC still remains obscure. Its understanding is important from an industrial point of
view and scientifically challenging. This study proposes a review of the models and experimental observations
concerning the mechanisms of the BC and aims at identifying some potential triggering instabilities in the pattern
of the nucleate boiling regime near the BC conditions. The goal is to deduce from this study a target problem to
solve (and some ways to study it) that could help improving the understanding of the BC phenomenon. This leads
us naturally to the motivation of the numerical simulation of bubble growth and the subsequent development of
a numerical method dedicated to it.

This chapter is organized as follows. In section 1.1, we briefly introduce the classical description of the
different regimes of boiling heat transfer. The boiling crisis is defined as the departure (transition) from the
nucleate boiling regime (DNB) that occurs at large heat flux and is associated to the drying of the heating surface.
In the following, we therefore focus on this regime. In section 1.2, we distinguish three different length scales
for the study of the nucleate boiling regime and define the main physical mechanisms associated to each length
scale. The goal is to define a framework for the analysis of the boiling crisis phenomenon as being triggered
by an instability that takes place at one of these length scales. In section 1.3, we establish the state of the art
of the modeling of the boiling crisis. We introduce the Zuber correlation, which is one of the most efficient
correlation to predict the DNB, and we establish the main open questions concerning the nature of the BC
instability. In section 1.4, we briefly report some recent experimental results attesting the existence of a specific
regime in the near-wall region close to the BC conditions. We then suggest a local interpretation of the Zuber
correlation consistent with these recent direct observations. In section 1.5, we review the existing models for the
boiling crisis that can be related to the local interpretation of the Zuber correlation and conclude on the necessity
of pursuing the analysis of the instabilities of a bubble growing over a heated wall. Due to the nature of the
equations describing such a bubble growth, simplifying models allowing analytical results can be viewed as too
rigid and it appears as useful to study the whole system of governing equations using numerical simulations. This
last statement constitutes the motivation for the developments presented in the remainder of this study.

3
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1.1 The boiling regimes and the boiling crisis

In this section, we present the classical description of the boiling regimes and introduce the BC phenomenon
as the transition between two different boiling regimes. This section reproduces classical considerations about
boiling systems and is therefore devoted to readers unaware of these questions. A more detailed presentation of
the boiling process can be found in [28] or in [45] among others.

This section is organized as follows. First, we introduce the different boiling regimes with the help of the
classical representation of the Nukiyama curve ( section 1.1.1). Then we describe more precisely the main
characteristics of the different regimes by describing the different nature of the physical processes occurring in a
near wall region (section 1.1.2).

1.1.1 The Nukiyama curve

Let us consider the heat transfer process from a heated solid to a boiling fluid. In 1934, Nukiyama [103] ex-
perimentally studied the heat transfer coefficient of the process for a pool configuration and first introduced its
essential features including observation of the process instabilities. The pool boiling experimental set-up consists
in a boiling fluid confined in a pool and therefore does not include any external mean flow. The heating solid is
either a plane plate, a wire, a ribbon or one of the bounding wall of the pool. It is required that its dimensions
exceed the characteristic dimension of the vapor inclusion (typical bubble radius) in order to ignore size effects.
In the remainder of this study, we consider by default the pool boiling of pure fluids with an heated horizontal
wall at the bottom of the pool as represented on figure 1.1. Let us introduce the amount of heat transmitted
through the solid-fluid contact area g and the mean temperature (7T') of the wall. There exists a typical value of
the temperature at the liquid-vapor interface at thermodynamic equilibrium at the pressure P of the system, say
Ts.:(P). This temperature is considered as reached asymptotically, i.e. sufficiently far from the heated wall. It
appears as naturally relevant, since we describe boiling systems as a heat exchange process, to characterize the
wall temperature by (AT) = (T) — Ty, (P) instead of (T'); (AT) is called the wall superheat. The heat transfer
coefficient of the process reads hpoiiing = q/(AT). For a given system, the Nukiyama curve is a plot of the heat
flux ¢ as a function of the mean temperature (AT'). A typical Nukiyama curve is reproduced on figure 1.1.
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Figure 1.1: Nukiyama curve

Different portions of the curve, namely (NB), (T B), and (F B), allow to clearly identify three different boiling
regimes. In the following we describe these different regimes.

Nucleate boiling regime (NB) The nucleate boiling regime corresponds to low wall superheats (7T') and to a
limited range of wall heat flux g. The lower limit in terms of both g and (AT’ is the onset of the boiling (ONB)
and thus corresponds to the limit of the convective regime. ONB corresponds to a transition between the non-
boiling and the boiling regimes. It is worth noting that the NB regime is a very efficient heat exchange mechanism
since large amounts of heat can be extracted through a wall while keeping its temperature at low levels (i.e. of
the order of magnitude of the saturation temperature of the boiling fluid). This explains the wide use of boiling
fluids in heat exchangers. The limit of the NB regime associated to the high values of g is called departure from
nucleate boiling (DNB) and corresponds to a transition between the different boiling regimes. The associated
value for the heat flux is called the critical heat flux (CHF).

Film boiling regime (FB) If at DNB, the heat flux is increased above the CHF value, the system shifts to the
film boiling regime (FB). The FB regime corresponds to high values of the wall superheat and to heat transfer
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coefficients that are lower than in the NB regime. The transition from NB to FB is the boiling crisis BC of interest
in this study. It is characterized by a very sudden and very large increase of the wall temperature. Typically the
order of magnitude of this increase can reach several hundreds of Kelvin. This increase is at the origin of the
potential burnout of the wall.

Transition boiling regime (TB) The lower limit of FB is characterized by the minimal heat flux (MHF) that
corresponds to the transition to the third boiling regime, the transition boiling (TB). The domain of existence of
TB joins the CHF and the MHF points and concerns intermediate values of wall temperature. For this regime,
the local wall heat flux and/or temperature fluctuate violently around their mean values. For these reasons, TB
is hard to characterize in itself and is often modeled as an unstable mix between the NB and FB regimes. It is
worth noting that steady-state TB regime can be experimentally reached by imposing the wall temperature and
not the heat flux. If the heat flux ¢ is experimentally imposed, this regime is unstable and therefore unaccessible.
We discuss this point in more details in section 1.1.3.
In the next section, we present more precisely the boiling process of the different regimes.

1.1.2 Vapor production and vapor release processes versus solid/fluid contact

In this section, we present how the regime distinction in terms of wall temperature and wall heat flux is related
to different boiling flow patterns in the near wall region, where the major part of the vapor is generated. The
denomination of the boiling regimes explicitly describes the corresponding near wall configuration. Figure 1.2
provides a schematic representation of near-wall boiling process for the different regimes.
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NB regime The formation of the vapor bubbles in the NB regime is the result of successive nucleation events
and consecutive heterogeneous bubble growth dynamics until the departure of the bubble from the wall. The
major part of the wall is in contact with the liquid phase even if high void fractions can be reached right above
the wall. As a consequence, the wall superheat is low (since liquid temperature cannot reach large superheats
values). Due to the agitation associated with bubble growth and motion, the efficiency of the convective heat
exchange is greatly enhanced with regard to a single-phase case. This basic picture of the NB regime is studied
more precisely in the next sections where we focus on the large heat transfer regime.

FB regime In the FB regime, the wall is covered by a vapor film. At the liquid-vapor interface, a dynamic
process of vapor generation and release occurs. Due to the Rayleigh Taylor instability (RTI), the surface of the
vapor film is wavy and is the location of a cyclic process of bubble formation as represented on figure 1.2(b).
The heat flux is transmitted from the wall to the liquid-vapor interface (whose temperature can be approximated
by the saturation temperature) through a combination of radiative, conductive and convective transfers across the
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vapor layer. The low value of the vapor thermal diffusivity (with regard to the liquid one), explains the higher
wall temperature in the FB regime than in the NB regime.

TB regime At the MHF, while decreasing (AT) and coming from the TB regime, the film configuration be-
comes unstable and locally breaks (i.e. locally some liquid comes into contact with the wall). As a consequence,
wetted (covered by the liquid phase) area appears on the solid surface. In the transition boiling regime, the
fluid/solid contact surface is the place of large and intermittent wetting and drying dynamics, i.e. it is covered
alternatively by the liquid (wet) or the vapor (dry) phases. These hydrodynamic events are related to the large
fluctuations of (AT and gq.

Distinction of the boiling regimes in terms of the nature of wall-fluid contact As a consequence of their
above classical descriptions, the main boiling regimes can be characterized by the ratio of the wetted solid/liquid
area with the total wall surface. We can thus associate each regime transition (DNB and MHF) with a drying
transition. DNB (and therefore BC) corresponds to the appearance of large dry areas whereas MHF corresponds
to the collapse of a vapor film over the wall.

1.1.3 A few remarks about the boiling regimes and the boiling transition

In this section, we provide to the reader a set of remarks about the validity of the very general presentation of the
boiling regimes made in the sections 1.1.1 and 1.1.2 using the pool boiling as a representation of a typical boiling
system.

In the following, we consider several singularities of the pool-boiling configuration considered and discuss
briefly their influence on the NB features. Most of the experimental facilities considered in the remainder of
this study are built such that a steady-state uniform heat flux ¢ is imposed at the wall. The influence of such an
experimental set-up is discussed concerning

 the wall temperature field,
* the existence of the TB regime,
* the fact that transient heat conditions are not taken into account,

* and the neglect of the influence of more realistic characteristics of an industrial heat exchanger on the NB
features (such that the heater orientation and geometry or the existence of a mean fluid flow, currently
inside a loop)

Wall heat flux controlled and wall temperature In most of the experimental facilities considered, the heat
flux ¢ is imposed as being spatially and temporally constant. The boiling process takes place in the near wall
region. On the one hand, the temperature at the liquid-vapor interface of a growing bubble is close to the equi-
librium temperature 7's,,(P), this interface is locally in contact with the wall (at the so-called triple line region)
where it imposes the temperature. On the other hand, in the surrounding liquid, and due to heat conduction, the
temperature is larger than 7,(P). As a consequence, the wall temperature is neither uniform nor constant in
time. This explains why we choose to introduce the notation (AT') for the wall temperature thus explicitly refer-
ring to a mean (in space and time) temperature. Experimental data (e.g. [130]) show that the wall temperature in
the NB regime can encounter large fluctuations (up to several tens of Kelvin near the BC conditions); this will be
discussed in more details in section 1.4.

Transition Boiling regime When the heat flux is imposed, the TB regime is unstable and therefore unobserv-
able. The boiling curve thus reduces to the two regimes of NB and FB, the transition from one regime to another
being still defined by the same CHF and MHF points. Let us consider a cyclic (supposed quasi-steady for the
sake of simplicity) in terms of evolution of the heat flux g where the maximum, resp. minimum, value say ¢mqx,
resp. gmin, s larger, resp. lower, than CHF, resp. MHF. The evolution of the system is typically a hysteresis
phenomenon since the sequence over a period ¢min — Gmax — Gmin reads

* NB regime on g,;; — CHF
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*x FB on CHF — ¢, and gyqx — MHF
* NB on MHF — gin

It is worth noting that experiments of pool boiling with a controlled wall temperature can also be performed (cf.
[44] or [7] whose experimental results are partially reported in section 1.4). In this case, the whole Nukiyama
curve, including the TB regime is accessible. It is observed that the space and time variations of the temperature
at the heater-fluid interface are rather small (of the order of 1K maximal) but that the corresponding space and
time variations of the wall heat flux ¢ can be very large.

Transient conditions The third point concerns the validity of the study of the BC mechanism for industrial
situations. In an industrial situation, the heat flux is not necessarily steady and the BC condition is often reached
under transient conditions. The value of the CHF should depend on the characteristic time of this transient.
Let us note that the value of the transient CHF is classically considered as being larger than or equal to the
steady-state value, e.g. [14]. The study of the CHF under transient conditions is not considered in this study.
However, in the context of the heat exchange with a fluid that does not boil in the nominal condition (of interest
for the targeted applications concerning the study of nuclear power plants safety), this tendency needs to be
studied more carefully for very rapid transients as stated by Berthoud [14] and according to the results of the
experimental study of Sakurai [118] briefly presented in section 1.3.4. In the following we will not consider such
very rapid transients but only BC that may occur from less rapid transients, those latter conditions being quite
relevant as well for many accidental situations in the study of nuclear power plants safety.

Industrial configuration In the industrial situation where the boiling system is a heat exchanger, the boiling
fluid flows inside a loop and the heating element consists in one part of the loop. This situation is different from
the pool boiling experimental facility. However, the two regimes of NB and FB are still observed, as well as the
transition that takes place at the BC. The question that arises reads: Does the nature of the experimental facility
have an influence on the BC? Experimentally the value of the CHF differs for different facilities. Nevertheless
the mechanism leading to the BC is not necessarily different. Indeed if a similar BC mechanism is valid for any
facility, the difference between the CHF values can be attributed to secondary effects of the facility on the NB
process. The assumption of a single mechanism for the BC is made in the following and will be justified in more
details in section 1.3.4. It is also interesting to mention that the geometry of the heating element as well as its
orientation with respect to the gravitational direction have at least a parametric influence on all the phenomena
considered. Nevertheless their influence is secondary since they are not considered as the primary parameters
that are at the origin of the BC.

Concluding remarks We have briefly considered a few remarks concerning the a priori validity of the follow-
ing developments. We have clarified the real nature of the variables g and (T') used to parameterize the boiling
curve by specifying their meaning in two experimental configurations: wall heat flux or wall temperature con-
trolled. Then we have mentioned that our study does not apply for very rapid transients conditions (such situation
can also lead to BC and eventually corresponds to certain scenarii of accidents). Finally we have introduced the
problematic of the existence of a single mechanism for the BC , i.e. that should not depend on the experimental
configuration investigated. We assume that the BC mechanism corresponding to the pool-boiling configuration
studied in the following corresponds to the mechanism in other configurations as well. This point will be justified
in more details in section 1.3.4.

In the remainder of this study, we consider by default the pool boiling configuration with a horizontal plane
heater and with a controlled heat flux ¢ at steady state. The reader will be explicitly informed when other
configurations are considered.

1.1.4 Conclusion on the presentation of the boiling regimes

The different boiling regimes, as well as the different transitions between these regimes, have been introduced
from the classical representation of the heat exchange process between a hot wall and a boiling fluid. Then, we
have described the near-wall process for the different regimes. We have identified the boiling crisis (BC) as being
related to a drying transition at the wall. We have determined the validity of our study of the BC mechanism in
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the particular pool boiling configuration by assuming a single (independent from the configuration) mechanism
for the BC .

It is worth noting that, despite more than a half century of studies devoted to its understanding, the BC
mechanism is nowadays still not well understood.

In the following, we reduce our attention to the study of the pool boiling at conditions near the BC, i.e. the
NB regime at high heat flux.

1.2 Length scales and physical mechanisms

Let us first study the main physical mechanisms of the NB process at high heat fluxes. The goal of this study
is to introduce the different physical mechanisms liable to the BC. To study these physical mechanisms, we first
introduce three different length scales as determining three levels of description of the NB process. For each
scale we then identify the major physical mechanisms that have been associated to a possible BC mechanism.
We will then in section 1.3, on the basis of a review of the previous models for the BC, study the pertinence of
considering these physical mechanism as being at the origin of the BC phenomenon.

This section is organized as follows. First in section 1.2.1, we introduce and motivate the classification of
the NB mechanism according to three different length scales. Then in section 1.2.2, we present the first length
scale denoted “two-phase flow” scale and that corresponds to the most idealized model for the NB process. In
section 1.2.3, we study the “mean bubble growth” scale that corresponds to a more rich and more local description
of the NB process with regard to the “two-phase flow” scale. We introduce the main physical mechanisms that
are taken into account at this level of description. Finally, in section 1.2.4 we present the most precise level of
description of the NB process that refers to the “local” length scale. We determine the main additional physical
mechanisms considered at this scale with regard to the two other levels of description.

1.2.1 The three different scales

An exhaustive description of the NB mechanism in view of the study of the single BC mechanism At
this stage, it seems important to expose the motivations for the exhaustive presentation of the NB mechanisms,
whereas only the study of BC is targeted. This exhaustive presentation is justified by a currently recognized
experimental observation: the value of the CHF is influenced by all the parameters of the NB process regardless
the nature of this parameter (from the micro-structure of the wall to the intensity of the convective flow far above
the wall), e.g. Sadavisan et al. [117]. Therefore, no physical phenomenon involved in the NB regime can be a
priori disregarded to determine the potential instability mechanism related to the BC. It also means that some
more precise information, than the above mentioned single knowledge of the influence of a parameter on the
value of CHEF, is required to conclude on the nature of the instability. Such a more precise information could lie,
for example, on the knowledge of the sequence of events associated to the drying of the wall or on the analysis
of successful correlation for the value of the CHF. We will indeed in section 1.4 study some recent experimental
observations that provide a way to improve the actual understanding of the NB regime process at high heat flux
and as a consequence can be used to determine the BC mechanism.

The classification of the mechanisms according to three levels of description In the following, we define
three different levels of description of the NB process, each of this level being related to a different typical length
scale for the bubble description. For each scale different physical mechanisms can be identified. Let us briefly
introduce the different scales considered.

In the previous section, we have clearly distinguished the different regimes of the pool boiling by considering
the process in a near wall region. The typical size of this region is of the order of magnitude of a few bubble
diameters. This sets the bubble as the natural basic element of the NB process. The three different length scales
can be defined from three different levels of modeling bubbles. At the first level of description, denoted “two-
phase flow scale”, (see section 1.2.2), the bubbles are considered as fixed in geometry and size. This is mainly
relevant far from the wall, i.e. when the main part of the bubble growth is achieved. This level of description
therefore ignores the bubble growth dynamics. At the second level of description, denoted “mean bubble growth
scale”, (see section 1.2.3), the bubble are considered as fixed in geometry but not in size. For instance the bubble
is assimilated to a sphere whose size depends on time, the dynamics of bubble formation is therefore taken into
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account. At the third level of description, denoted “local scale”, (see section 1.2.4), both the geometry and size
of the bubble are considered as time dependent. The dynamics of bubble formation is therefore described more
precisely (with more degrees of freedom) than at the “mean bubble growth scale”. An illustration of these three
levels of description of the NB process is provided on figure 1.3.
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Figure 1.3: Three different levels of description, the “two-phase flow scale”, the “mean bubble growth” scale and
the “local scale”

In our attempt to identify a mechanism of instability in the NB process, the classification of the different
mechanisms according to the scale they refer lies on a formal scale separation hypothesis. Let us note however
that this scale separation is not inconsistent with the above mentioned sensitivity of the value of the CHF with all
scales parameter.

This classification constitutes, to our own point of view, a gain in understanding for the analysis of the
potential mechanism for the BC by allowing to provide a grouping of phenomena that could directly interact.

Sadavisan et al. [117] proposed an interesting study of the physical mechanisms that are relevant for the
study of NB regime at high heat flux. The goal pursued by Sadavisan et al. [117] is to “highlight specific areas
on which [they] believe experimental efforts should focus to obtain improved mechanistic models of CHF”. The
authors defined three categories related to three main “actors” of the nucleate pool boiling process, namely, the
fluid, the heater, and the heater-fluid interface. In our own study of the physical mechanisms of the NB regime
that are supposed to be related to the BC, we consider a similar set of mechanisms however with a different
classification. The difference between these classifications lies on the goal pursued. The goal pursued in [117] is
somewhat different from our goal since by considering the same set of actors of the NB process we indeed also
try to identify the potential BC mechanism.

Let us consider one by one the different scales and the mechanisms of the NB related to the corresponding
level of description.

1.2.2 Two-phase flow scale

This scale is the largest one in our classification and is associated to the most idealized level of the modeling of
the NB process. The basic picture considers a population of bubbles coming from the wall and having constant
size and geometry. Mean space and time frequencies of bubble emission are modeled. The rate of vapor incoming
from the wall is related to the value of the wall heat flux ¢g. It is worth noting that this scale does not actually
“see” the wall. At this level, instability in the boiling process refers to a hydrodynamic instability in the two-
phase flow generated by these bubbles as presented in section 1.3. This kind of large scale analysis of the boiling
flows has been used for example by Zuber [157] to derive a correlation for the low heat transfer NB regime
(“region of isolated bubbles” where bubbles do not interact with each other). At larger heat flux, bubbles become
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so numerous that their interactions are no longer negligible. The large number of individual bubbles generated
in the near wall region coalesce each other and somewhat form big masses of vapor flowing away from the wall.
These big masses can be idealized by a somewhat continuous vapor channel, the vapor columns. The model of the
two-phase flow far above the wall is therefore idealized by a counter-current flow of vapor inside these channels
and of liquid around those columns. Since this large scale is only roughly considered in the following study of
BC mechanisms, we deliberately do not describe more precisely the details of the two-phase flow formulation.
The reader interested by this approach can refer to Carey [28].

1.2.3 ‘Mean bubble growth’ scale

In this section, we study the physical mechanisms related to the level of description at the “mean bubble growth”
scale. These physical mechanisms are potentially related to the mechanism of the BC itself, as it will be shown
in the review of the BC models in section 1.3. The goal of this section is therefore to introduce these main
mechanisms of the NB regime in view of this review.

Presentation of the scale At this scale, the near wall NB process is described in such a way that the bubble
formation is evaluated through modeling. From the study of the bubble growth process, several heat-exchange
mechanisms can be identified and evaluated. The global correlation g = f({7T')) is then recovered by integration
of these mechanisms. The influence of physical phenomena occurring in a near wall region (that were ignored at
the “two-phase flow” scale) are therefore entering the model.

At this level of description the NB process is idealized as a set of sub-phenomena. The main one is the
cyclic process of bubble formation near the heated wall. It is idealized by a sequence of events (nucleation,
growth and departure). Each of these sub-phenomena have been the object of specific studies, either based on
analytical models or on correlation issued from experimental observations. In the following we present the main
sub-phenomena and provide to the reader interested the corresponding main references.

Description of the heat transfer process of the NB regime Let us consider the description of the global heat
transfer process of the NB regime. The wall heat flux contributes to different sub-heat transfer mechanisms, the
partition between these heat transfer mechanisms being a function of the wall heat flux, e.g. Dhir [45]. The
most specific heat transfer mechanism of the boiling process is the latent heat transport which corresponds to the
amount of heat necessary to create the bubbles that will flow outward the wall carrying this amount of heat. In
addition to the latent heat transport, two different heat transfer processes can be identified. The first one is the
classical convective heat transfer. It is worth noting that in absence of any mean convective flow (as in the pool
boiling configuration) the fluid motion is essentiallly driven by the bubbles motion. The second one is specific
of the NB regime and corresponds to a transient heat transfer mechanism associated to the process of bubble
formation and departure. As the bubble leaves the wall, the thermal boundary layer that has formed above the
wall is destroyed and colder liquid is brought into contact with the heated wall: the bubble motion in the near
wall region acts as a pump that mixes hot liquid of the near wall thermal boundary layer with cold liquid far from
the wall. This dynamics is at the origin of a transient heat conduction mechanism. Both latent heat transport and
transient heat conduction are clearly related to the process of bubble formation. It is hard to actually determine
the partition between these different heat transfer mechanisms. It is however classically assumed that at high heat
fluxes NB regime the latent heat transport is dominant.

As a partial conclusion, the NB regime heat transfer process is mainly determined by the bubble growth
dynamics. Let us now consider the idealization of this latter process at the “mean bubble growth scale”.

The models for the bubble formation This bubble formation is considered as a sequence of events occurring
at the wall. Let us first consider the model for the space location of the event of bubble formation.

Nucleation site density At least at low heat flux NB regime, the bubbles are experimentally observed
as generated on preferential locations of the wall, the so-called nucleation sites. This phenomenon has been
modeled through the definition of a nucleation site density, NSD, for a given wall. The surface of a given wall
is characterized by a discrete set of cavities being of specific size and shape. Models for the activation as a
nucleation site of a given size of shape of cavity can be found in Hibiki and Ishii [61]. NSD has also been studied
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experimentally, e.g. the experimental study of Benjamin and Balakrishnan [12]. For a given wall, NSD is a
function of the wall superheat (and as a consequence of the wall heat flux).

As a partial conclusion, the NSD characterizes the space location of the bubble formation events for a given
wall heat flux.

The bubble formation cycle at a given nucleation site Bubble are thus considered as being generated
from given locations. The cyclic process occurring at a given activated nucleation site is the following: the
bubble first nucleate, then it grows and finally it departs from the wall, a delay exists between the departure of
the bubble and the next nucleation event.

Let us first consider the models for the bubble growth. It is classically modeled as being made of two different
stages, the growth being first inertially controlled and then thermally controlled, e.g. Mikic et al. [93]. During
these stages, the bubble is idealized as having constant geometry, being first hemispherical (inertially controlled)
and then spherical (thermally controlled). As a consequence the growing bubble is described with the help of
a single parameter: its radius. In [93], the classical models for the growth rate for the two stages are derived
that reduce to the time evolution of the bubble radius R. More complex models including the effect of a liquid
micro-layer underneath the bubble on the thermally controlled stage have been later developed by Cooper and
Lloyd [40] among others.

The end of the bubble growth process in the near wall region corresponds to the departure of the bubble.
Classically the size of the bubble (its radius) at departure is modeled using a force balance'. The most classically
and widely used model is due to Fritz [55] but let us also refer to the most recent review proposed by Thorncroft
et al. [132]. It is worth noting that the departure of the bubble from the wall is thus classically modeled as
independent from the growth dynamics.

As the bubble departs from the wall, there exists, at low heat flux at least, a delay before a new nucleation
occurs, this delay is called the “waiting time”, e.g. the model of the NB regime proposed by Kolev [79]. This
waiting time enters the whole bubble formation cycle such that together with the bubble growth rate and the size
at departure, the frequency of bubble emission from a given activated site is defined. Together with the NSD, we
therefore have a complete description of the bubble formation process of the NB regime.

Interaction between bubble formations process at neighboring sites Let us note that the previously
described bubble growth formation mechanisms are valid as long as each nucleation site can be considered as
isolated from its surrounding. The interaction between sites has been also investigated, e.g. the interesting
experimental work of Zhang and Shoji [154]. The interaction can be considered as being of three types: thermal,
hydrodynamic, or coalescence. The relative effect and its nature (as being either promotive or inhibitive) of each
interaction on the bubble departure frequency depends on the spacing between the sites as well as on the wall
heat flux. However let us note that too little is known on these interactions at high heat fluxes.

Conclusion on the main physical phenomena of the description of the NB regime at the ‘“mean bubble
growth” scale The list of table 1.1 summarizes the main physical phenomena associated to the “mean bubble
growth” scale. From all these “sub”-models it then possible to model the whole NB heat transfer, as it has been
done for example by He et al. [60].

As a partial conclusion, we have introduced the main physical mechanisms corresponding to the description
of the NB regime at the “mean bubble growth” scale. The bubble formation cycle has been shown to be the key
phenomenon of the NB regime process at this level of description. The corresponding models for the bubble
growth and dynamics are however still rigid since the bubbles are described as being either spherical or hemi-
spherical. As a consequence, the models at the “mean bubble growth” scale do not bear the ability to describe a
spreading of the bubble. We will refer in the following to these bubbles as “regular” bubbles. A priori, none of
the mechanisms determining the NB regime can be disregarded as being at the origin of the BC.

Let us mention the interesting attempt of Buyevich and Webbon [22] to introduce less rigid description of the bubble shape (two
parameters, namely bubble volume and wall contact area of the bubble foot, instead of the single bubble radius in the classical models)
to evaluate the bubble growth dynamics. The model studied is very interesting since it includes the departure mechanism as a fully
consistent part of the whole bubble growth process. Due to its ability to consider a time evolution of the geometry of the bubble, this
model is in fact at the boundary between the “mean bubble growth” scale and the “local” scale. In this model, the surface tension is shown
to promote the departure of the bubble. There still exists an open debate about the role of surface tension as either promoting or impeding
the departure e.g. [45]. Let us note that numerical simulations appear as a possible relevant tool for improving this understanding.
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1. partition of the wall heat flux between different heat transfer processes

(a) latent heat transport (evaporation) (eventually two parts around bubble and micro-layer
contribution)

(b) transient conduction

(c) natural convection
2. spatial frequency of the bubble formation process, the nucleation site density NSD, NSD((T'))
3. bubble growth rate
4. bubble departure size
5. waiting time

6. bubble interactions: thermal, hydrodynamic, and coalescence

Table 1.1: Physical mechanisms at the “mean bubble growth” scale

It is worth noting that from all these mechanisms, it is possible to imagine a variety of possible events leading
to the BC mechanisms. The review of the corresponding models is provided in section 1.3.

1.2.4 Local bubble description

The previous level of description at the “mean bubble growth” scale describes the bubble growth on an idealized
way which is relevant for the description of the mean bubble formation process at least at low heat flux NB
regime. However, as it is shown in the section 1.4, at the high heat fluxes NB regime, there exists a population
of bubbles whose behavior is apparently very different from this regular behavior: these bubbles are more spread
over the wall before their departure. This irregular bubble dynamics will be shown to be potentially related with
the BC event, and is therefore of interest in this study. The model of NB process at the “mean bubble” scale is
too rigid to describe such a behavior (according to the fact that the bubble shape is imposed to be either spherical
or hemispherical). We must therefore consider a smaller level of modeling of the NB process. The present level
of description takes into account the fully time and space dependent bubble shape. It is worth noting that the
amount of modeling is therefore quasi-vanishing since we now consider the full set of non-isothermal Navier-
Stokes equations and interface jump conditions (c¢f. our presentation of the interface jump conditions in the
appendix A.2). In the list 1.2, we consider the main physical mechanisms that are taken into account at this
“local” scale in addition to the physical mechanisms considered at the “mean bubble growth scale” and provide
some references. To take into account the whole set of mechanisms and the complex time dependent geometry
of the bubble at this level of description, it is required to use numerical methods. Several numerical simulations
of bubble growth dynamics using different numerical methods can be found in the literature, e.g. Son et al. [128]
for the level-set method, Welch and Wilson [147] for the VOF method, Juric and Tryggvason [69] for the front
tracking method (the application proposed in the two latter mentionned article only concern the FB regime), Yang
et al. [151] for Lattice-Boltzmann model based numerical method or Fouillet and Jamet [54] for diffuse interface
model based numerical method.

As a partial conclusion, in order to describe certain features of the NB regime at high heat fluxes, it is
necessary to consider the full problem of the bubble growth as having time dependent geometry.

1.2.5 Conclusion on the analysis of the different mechanisms related to NB regime near BC
conditions

In this section we have studied the main physical mechanisms of the NB mechanisms in view of the determination
of the BC mechanism.
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1. Local curvature of the bubble and capillary forces

2. Pressure recoil at the interface: the jump in pressure [P] = —I'*[1/p] where I" is the local mass
transfer rate (cf. our study of the jump conditions in appendix A.2)

3. Triple line dynamics (static-dynamic contact angle) and associated quasi-singular heat transfer
(c¢f. Anderson and Davis [3] or Mathieu et al. [92])

4. Gravity: effect of the hydrostatic pressure gradient on the bubble shape and consequently on its
departure dynamics (cf. Shikhmurzaev [125] whose model considers the time dependent shape
of the bubble and also includes a model for the contact line dynamics)

5. Local heat conduction problem inside the area of contact between wall and vapor at the dry foot
of a bubble (c¢f. Blum et al. [16])

Table 1.2: Physical mechanisms at the local scale

To do, we have first introduced a classification of the different mechanism according to different levels of
descriptions of the NB regime process. At the largest scale, the “two-phase flow scale”, the near wall process are
not considered but rather the mean bubbly flow above it. At the “mean bubble growth” scale, the NB process is
described as a sum of bubble growth events. Each bubble growth event is described with the help of semi-rigid
models allowing to consider the time dependent size of the bubble. The physical mechanisms corresponding
to this level of description are summarized on table 1.1. However, this level of description is not sufficient in
order to describe some irregular bubble growth events that could be associated with the BC mechanism. To
describe these irregular bubbles it is required to use the level of description at the “local” scale. At this scale of
analysis, the whole set of Navier-Stokes equations as well as the interface jump conditions are considered. As a
consequence, additional physical mechanisms can be taken into account in the model of the bubble growth and
therefore explain the irregular bubble growth. These physical mechanisms are summarized on table 1.2.

Now that the main physical mechanisms of the NB regime have been introduced, it is possible to consider
the different models for the BC mechanisms.

1.3 Models of the boiling crisis mechanism

Introduction

The question about the BC that arises from our presentation of the physical mechanisms at different scales is the
following: At which scale does the triggering mechanisms of the DNB? transition take place ? However, other
open issues about the nature of the BC phenomenon can be identified. They are briefly discussed in the last part
of this section.

In this section we study the different models that have been proposed to explain the mechanism of the BC.
The goal is to provide, through the analysis of these models, an analysis of the potential mechanisms for the
boiling crisis. This analysis will help us to justify the fact we disregard some mechanisms as being actors of the
BC and finally redirect our investigation on a specific scale. We therefore deliberately report the extended field
of research devoted to the study of the BC mechanism.

The different models for the BC are grouped according to the scale to which belong the physical mechanism
considered as being at the origin of the BC. Our presentation is not exhaustive but deliberately contains a large
amount of information and illustrates the wide range of possible mechanisms for the BC. This analysis will then
be used to determine what we believe to be the most relevant elementary target problem. Our main goal is thus
not to present each model in detail but rather to identify, for each model, what are the main NB mechanisms
considered as being at the origin of the BC. The reader interested on a specific model can refer to the references

21t is worth noting that whatever the initial scale of the mechanism its consequences have an influence mainly on the near-wall process
where it leads to a total dry-out.
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provided for each model or on more general articles that propose a review of the BC modeling like [45] or [74]
among others.

This section is organized as follows. First in section 1.3.1 we present and analyze the Zuber’s model and
its consequent correlation for the CHF. Then in section 1.3.2 we present the BC mechanisms related to the
NB mechanisms considered at the “mean bubble growth” scale (¢f. their presentation in section 1.2.3). In
section 1.3.3 we present the model for the BC mechanism that require the more precise level of description
of the NB regime related to the “local” scale. Finally in section 1.3.4, from the analyze of all these models,
we determine our motivation to investigate more precisely the BC mechanisms related to the “local” scale and
propose the analyze of some experimental results (provided in section 1.4) as a way to gain in understanding of
the NB regime at high heat fluxes.

1.3.1 Boiling crisis’ mechanisms at the ‘“two-phase flow”’ scale:
the hydrodynamic theory and the Zuber’s correlation

In this section, we study the hydrodynamic theory, that is, to our knowledge, the only mechanism for the boil-
ing crisis that considers that the mechanism of the BC takes place at the “two-phase flow” scale defined in
section 1.2.2.

In a first part, we present the main lines of the hydrodynamic theory developed by Zuber [156] including the
idealization of the NB process and of the BC phenomenon. It leads us to introduce the Zuber’s correlation (1958)
which is still today one of the most efficient predictive correlation for the CHF. In a second part, we show that
the hydrodynamic model for the BC is not attested experimentally. In a third part, we draw our own conclusions
about the interpretation of the Zuber’s results.

The Zuber model and the Kutateladze correlation Zuber [156] proposed a model of the NB process at high
heat flux that allows to derive a correlation for the CHF>. Experimental observation of the NB process at high
heat flux in pool boiling indicates that, above the wall, a large amount of vapor almost covers the surface. It is
worth noting that in the original context “covers the surface” meant covers the wall; in section 1.4, we analyze at
which level of description this picture is actually relevant. Such a large amount of vapor is modeled by Zuber as a
continuum of vapor, say a film. Vapor bubbles escape from the film and flows in the pool away from the wall. The
Rayleigh-Taylor instability (RTI) is relevantly supposed to describe dynamics of the upper surface of the vapor
film. The typical size of the bubbles is assumed to equal the most unstable wavelength of the RTI, say Agr;. The
flow made of the train of bubbles thus created is idealized by a net of discrete vertical channels, called columns.
Such a representation of the NB process is reproduced on figure 1.4. The characteristic scale of these columns
and of their spacing is supposed to be Arr; (1o on the figure). Each column, as an idealization of the train of
bubbles, is idealized as a vapor jet bearing a wavy surface, the wave number being given by the characteristic
bubble size Agr;. The vapor flows across a liquid which, because of the density contrast, is supposed to be at
rest. The wavy liquid-vapor interface is subject to the Kelvin-Helmholtz instability. Therefore there exists a
critical vapor flow rate for which the wave destabilizes. This two-phase flow instability corresponds to the limit
of validity of the (idealized picture of the) NB process and is associated to the BC. For higher mass flow rates
than the critical one, the NB process can no longer be sustained. Since the vapor flow rate is obviously related to
the wall heat flux, it allows to determine the value of the CHF. The model does consider that the wall heat flux is
totally transmitted to the fluid through latent heat transport (i.e. formation of vapor), which appears in fact as a
good approximation for the NB regime at high heat flux*. The resulting expression for the CHF reads

n oglei=py) [pitp
qCHF Zuber = _va4 > L - (11)
24 Py pi

where £ is the latent heat of evaporation, o the surface tension coefficient, p the density of the phases denoted ,
for the vapor and ; for the liquid, and g the gravity. The present writing of the Zuber formula is dimensional, but
it seems justified to present it in this form since it corresponds, to our knowledge, to the most widely used one.

31t is worth noting that, using a model of the NB process, Zuber recovered the results derived initially by Kutateladze [82] using a
non-dimensional analysis.
4This does mean that, in this model, the wall-fluid thermal interaction is not considered as a limiting mechanism of the NB process.
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Figure 1.4: Schematic representation of the NB process in Zuber’s model for the BC

This model is called the hydrodynamic model and has been, thereafter, improved and adapted to include a
dependence on parameters that do not appear in the original formula (for example the shape and orientation of
the heater, the static wetting properties of the fluid on the heater ...). For a more detailed presentation on these
improvements of the initial Zuber’s model, the interested reader can refer to the work of Moissis and Berenson
[95] or of Lienhard and Dhir [87, 86].

It is worth noting that the Zuber formula, despite its simple expression, provides a good predictive tool for the
value of the CHF in many different situations. Zuber’s correlation is most often retained in classical presentations
of the CHF. This correlation is one of the most important gain in the analysis of the BC because of the efficiency
of such a simple expression as a predictive tool (with regard to the number of physical mechanisms of the NB
regime). Indeed, it allows to identify the main key physical mechanisms that play a role in the instability of the
NB regime. This formula is analyzed in this sense in section 1.4.2.

An unrecognized two-phase flow instability Despite the wide use and attested efficiency of the Zuber correla-
tion, scepticism exists about the validity of the Zuber model to describe the real process of the BC phenomenon.
Experimental observations (such as those reported by Chung and No [37], for instance that are presented in sec-
tion 1.4) more accurate than the ones Zuber had at his disposal when he developed his model®, do not provide
any experimental evidence of any instability in the bubbly two-phase flow at BC conditions far from the very
near wall region.

Katto and Otokuni [75] performed experiments that simulate the bubbly vapor flow above the wall in high
heat flux NB regime using discharges of air. No abrupt change is observed in the two-phase flow pattern with air,
even though the velocity of the air coming out from the wall is “increased considerably beyond the magnitude
corresponding to CHF condition”. The authors concluded that there should not be any hydrodynamic instability
of the escaping vapor flow at the origin of the BC.

In a report on the actual observations concerning the boiling crisis in sub-cooled® flow boiling, Celata et al.
[31] reported “no evidence of a macroscopic change of the bulk flow pattern if the boiling crisis occurs”.

As a conclusion, there is no experimental evidence of the two-phase flow instability predicted by Zuber (or
any other one) at CHF conditions. As a consequence, we disregard in the following of this study the hypothesis
of a BC mechanism at the “two-phase flow” scale.

Conclusion In this section we have studied the hydrodynamic theory for the mechanism of the BC with the
help of the Zuber model. This model considers that the mechanism of the BC takes place at the “two-phase
flow” scale. We have briefly describe the main hypothesis used by Zuber in order to deduce the Kutateladze
formula from a schematic representation of the NB two-phase flow. We have outlined the efficiency of the Zuber

SNamely the work of Westwater and Santangelo [148]. It appears clearly in this article that the information about the near-wall
processes of the NB regime at high heat fluxes was still poor compared to the experimental observations we now have at our disposal.
Sub-cooled refers to the fact that the mean temperature of the convective flow is below the saturation temperature.
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correlation as a predictive tool for the CHF. According to the above statements, it is worth noting that the Zuber
correlation allows to predict the value CHF very well even though the pre-supposed mechanism used to justify
the formula is inconsistent with experimental observations. In the following, we therefore consider that the BC
mechanism is not associated to any two-phase flow instability at the “two-phase flow” scale. The main question
suggested by these statements is the following: How can Zuber’s formula catch the correct scaling of the CHEF,
i.e. of an instability whose nature is different from the large scale instability from which his formula has been
initially derived?

We present in section 1.4 an interpretation of the Zuber formula at the local scale that could answer this
question.

1.3.2 Boiling crisis’ mechanisms at the ‘“‘mean bubble growth’ scale

In this section, we present a few models that consider mechanisms occurring at the “mean bubble growth” scale
as being at the origin of the BC.

A large number of models for the BC that are related to this scale exist in the literature; however some of them
are only different versions of the same original idea. In this section, we provide to the reader one example of each
main family of models since it is sufficient in order to analyze the pertinence of the BC mechanism considered.
For another review of models at this scale, let us refer to Celata [30] that includes the description of other models
of a given family than the one described in the following. Celata [30] retained mainly three categories of models,
namely

1. The vapor removal limit and the near-wall bubbles crowding theory: turbulent motion of individual bubbles
and high density of bubbles in a near wall region become so important near the BC conditions that liquid
can supposedly no longer reach the wall, leading to its dry-out.

2. Liquid sublayer dry-out model: As a thin vapor blanket (elongated bubble) flows over the wall, the liquid
trapped between the wall and the bubble evaporates. For sufficiently high heat flux, i.e. at BC conditions,
the liquid disappears leading to the dry-out of the film.

3. Super-heated layer vapor replenishment model: this model is only devoted to boiling systems where a sub-
cooled convective flow exists. In this case, there exists a layer above the wall of a given thickness where
vapor bubbles can exist (because of the sub-cooling far above the wall), the so-called super-heated layer.
The vapor generated at the wall accumulates in a big bubble inside this layer. BC occurs when the vapor
generation is so high that this bubble reaches the wall.

To our point of view, the following list does not consider the whole set of relevant models for the BC at this
“mean bubble growth” scale. In the following, we present also some (often more recent than the review proposed
in [30]) models related to other categories of models for the BC mechanism.

BC mechanism based on a critical NSD, illustration of the near-wall bubble crowding theory Ha and No
[59, 58] proposed a phenomenological model for the dry-out of the wall at high heat flux NB (and subsequently
for the BC) based on the limited liquid resupply of the near wall region due to the increasing nucleation site
density (NSD). This limitation is due to a local accumulation of vapor bubbles that limits the liquid feeding
of the zone and therefore induces a local dryness of the wall. The authors consider a statistical distribution
of nucleation sites and model the activation of each site. They introduce a maximum value for the number of
activated sites on a given sub-area of the heater that induces a local dryness and therefore a limitation of the wall
heat flux possibly extracted. As a consequence, the efficiency of the NB regime is limited at high heat fluxes and
there exists a maximum heat flux that the regime can extract from the wall, the CHF.

The limitation of the liquid resupply in the very near wall region is often called upon to explain the drying
transition that occurs at the BC. If apparently intuitive, there exists, to our knowledge, no experimental evidence
of this phenomenon. Moreover, as it will be shown in section 1.4, there already exists, at heat flux lower than the
value of the CHEF, a very large accumulation of vapor above the wall, that obviously does not prevent the liquid
to reach the wall’. Moreover local precursor drying events observed in [130] before the CHF is reached occur

Let us note that due to the large density difference between vapor and liquid it is hard to experimentally visualize the path of the
liquid through a bubble layer. However, since the wall will be shown to be still wet even when a large accumulation of bubbles exists
above the wall, the liquid is always able to flow across this layer downward the wall.
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preferentially in regions previously not populated with active bubble sites.

As a partial conclusion, the origin of a local dryness associated with a critical local value of the NSD is not
attested experimentally. To our point of view, the phenomenological mechanisms based on a drying transition
initiated by a critical value for the NSD are questionable because inconsistent with the experimental observations
reported in [130].

BC mechanism based on a critical coalescence Bang et al. [9] proposed a model that can be linked up with
the family of ideas mentioned by Celata [30] and reported in the introduction of the present section. According
to Bang et al. [9], coalescence phenomena in a very near wall region increase with the heat flux and cause local
dryness of the heater at sufficiently high heat flux. The presence of a large vapor bubble over the wall is supposed
to hinder significantly the liquid flow toward the wall. The combination of these two effects leads to the existence
of a critical value for the heat flux at which the heater dries out.

Even if NSD is not called upon for this mechanism, the main idea is a bit similar to the model of Ha and
No [59] discussed previously. In the model of Bang et al. [9] the coalescence is said to promote local dryness
of the wall. The effect of coalescence on the dryness of the wall is in itself an open question: either, as for
example Bang et al. [9] proposes, it promotes the dryness by promoting the existence of large vapor masses in
a near wall region, or, as for example Zhao et al. [155] proposes (see in section 1.3.3 the presentation of the
corresponding model), it promotes the departure of this larger vapor mass (with regard to the initial bubble size)
and as a consequence impedes wall dryness. Too little is known concerning the effect of coalescence on the
dryness of the wall. Nevertheless, according once again to the experimental results reported in [130], the local
dryness of the wall is associated to an irregular bubble growth event which is independent of any coalescence
event (because it occurs preferentially in regions not previously populated by bubbles).

As a partial conclusion, the initiation of a local dryness of the wall associated to either bubble coalescence or
accumulation of bubbles is questionable, because not attested experimentally.

BC mechanism based on an instability of the bubbles flowing in the liquid This model is contemporary of
the Zuber’ s model. Chang [32] studied the stability of the NB regime, by considering that the heat transfer is
limited by a maximum rate of bubbles generated per unit area. The latent heat transport is assumed as the dom-
inant heat transfer mode. The instability of the bubbles is related to the stability of a plane interface (Helmholtz
stability). Such an instable bubble is said to break up into several smaller bubbles of various size. The dry-out of
the wall is then postulated to be related to the fact that, when this instability occurs near the heater, small bubbles
will partially flow toward the heater and cover it.

The author performed a force balance on a growing bubble to determine its characteristic size at departure,
say R. A critical velocity (Helmholtz stability) for the bubbles flowing in the liquid is determined using the
postulate that the surface tension force (=~ R where o is the surface tension coeflicient) stabilizes the bubble
while the dynamic force (0V?R? where V is the “resultant velocity at which the liquid pushes the bubble”, that is
evaluated differently by the author according to the intensity of the convective flow) destabilizes it. From these
considerations, it is possible to estimate the critical heat flux corresponding to the triggering of this instability.
It is interesting to note that the author recovered exactly the same formula as Zuber (i.e. as Kutateladze cf.
equation (1.1)). We discuss this remark in section 1.4.2.

Nevertheless such a bubble instability in a near wall region has never been, to our knowledge, observed
experimentally. As a consequence, this mechanism for the BC is not, to our point of view, considered as realistic
and is therefore disregarded in the following of this study.

BC mechanism based on a limitation of the NB heat transfer mode Kolev [79] considered an original
phenomenological model of the pool boiling NB regime based on the idea that the heat transfer is related to
the turbulence induced by bubble growth and departure in a near wall boundary layer. The turbulent length
scale is assumed to be of the order of the RTI wavelength, Agy;. The author derived a model for the NB heat
transfer process, i.e. the relation g({T')) between the wall heat flux g and the wall temperature (T'). The other
ingredients of this model are more common and include classical models for the NSD, bubble growth rate, bubble
departure size, and a waiting time (time between departure of a bubble from a given nucleation site and next
nucleation event). From these models, the author derives the expression for g({7T')), that has a maximum value
for g, associated to the CHF. Let us now consider the mechanism for this limitation of the NB regime at high heat
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fluxes. The mechanism identified by the author for this limitation reads as follows: as the wall temperature (T)
increases, the NSD increases sharply that leads to a decrease of both the size and time of the bubbles at departure.
More comprehensively, it can be shown from an analysis of the correlation g({7)) obtained that this limitation
of the NB regime efficiency is associated to a sharp increase, at high wall temperature, of the ratio of the waiting
time with the growth time at a given site. Indeed, this sharp increase yields that the bubble production rate at a
given site is limited. While we suppose that the waiting time is always negligible with regard to the growth time,
the limitation disappear.

The experimental results of Theofanous et al. [130] do not attest the existence of such a limiting effect of
a waiting time for the bubble formation at high heat flux NB process. It is indeed observed that the bubble
emission frequency at a given site monotonously increase with the heat flux even in conditions near the CHF.
As a consequence, even though the model of Kolev [79] actually allows to predict well the NB process, the
mechanism associated to its limitation at high heat flux (that is associated to the BC by the author) is not attested
experimentally and will be in the following disregarded.

Partial conclusion on the study of the BC mechanisms at the ‘“mean bubble growth” scale We have studied
the main families of models for the BC mechanism inherited from a description of the NB regime at the “mean
bubble growth” scale. It has been shown that the phenomenological BC mechanisms proposed at this level of
description cannot be attested experimentally. Moreover, they are contradictory with the experimental results
of Theofanous et al. [130]. As a main consequence, it appears as essential to pursue the experimental observation
of the BC phenomenon in order to attest the pertinence of these models.. As a consequence for the present study,
we try in the following to identify BC mechanisms that are consistent with experimental observations. The lack
of experimental evidence as well as the contradiction with the experimental observations reported in [130] is
therefore sufficient to ignore the hereinabove studied BC mechanisms as good subjects of study.

As a partial conclusion, there is a lack of experimental results to support BC mechanisms at the “mean bubble
growth” scale. Therefore we consider that none of the hereinabove studied models for the BC are sufficiently
consistent with experimental observations to pursue their analysis in the present work.

1.3.3 Boiling crisis’ mechanisms at the “local” scale

In this section we study the BC mechanisms related to the description of the NB regime at the “local” scale.
Keeping in mind our goal to identify a potential mechanism for the BC that is consistent with experiments,
we review the corresponding models and analyze the proposed BC mechanisms as being related to attested
experimental observations.

In the previous models, the BC mechanism was associated either to phenomenological sequence of events
(coalescence, limit of the liquid resupply) or to an instability of the bubbles itself as it flows inside the liquid
(cf. the models of Zuber [156] or Chang [32]) At the level of description corresponding to the “local” scale, the
BC mechanism is evaluated using a quantitative model of the bubble growth dynamics when it is still pinned to
the wall. In other words, the “local” scale BC models are based on the evaluation of local balances (thermal,
mechanical or both) that determine the bubble growth dynamics inside the near wall region as it is still pinned
to the wall. The value of the wall heat flux ¢ enters the balance considered. When a critical value of the wall
heat flux ¢ is reached, it leads to the transition to another mode for the bubble growth. This irregular mode
for the bubble growth will be shown to lead to its spreading along the wall and therefore to a drying transition.
The origin of the BC mechanisms considered is thus associated to this specific bubble growth mode. Since it is
initiated by a critical wall heat flux value, it indeed determines the CHF.

Recoil instability I Based on experimental observations of the dynamics of the interface of bubbles at high
heat fluxes (cf. [71]), Kandlikar [70] proposed a model for the CHF based on a force balance on the interface of a
bubble at departure. This model follows approximatively the same idea as that developed by Sefiane et al. [120]
and that leads to the model reviewed in the next paragraph.

According to the author, at the contact line, the recoil force tends the bubble to spread along the wall, whereas
other forces acting on the bubble tend to make the bubble become spherical and/or depart from the heater, letting
the liquid re-wet the heater. Indeed the recoil force tends locally the vapor to push the liquid away and is an
increasing function of the local mass transfer rate. As a consequence, when the recoil force dominates, the
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bubble grows preferentially in the normal direction to the interface where the mass transfer rates is the largest.
Since the region of high mass transfer rates is near the foot of the bubble, the recoil force is postulated to globally
result in a force that tends the bubble to grow tangentially to the wall, and consequently to spread (i.e. to enlarge
its dry area). The author considers a balance of forces acting on a bubble at departure conditions taking into
account the recoil, surface tension and gravity forces. The bubble at departure is initially considered as spherical.
The bubble size at departure is assumed to be given by the most unstable wavelength of the RTI, Agr;. The mass
transfer rate at the interface used to evaluate the recoil force is supposed to be related to the wall heat flux through
the definition of an influence area of the heater around a bubble where the bubble removes the heat as it grows.
The CHF is associated to the condition at which the recoil force becomes larger than the sum of the gravitational
and surface tension forces. For a horizontal heater and a contact angle of /2, the resulting expression for the
CHEF is equivalent to the Zuber correlation. The interesting property of the model to allow to recover the Zuber
correlation will be analyzed in section 1.4.2.

The development of the model is based on an interesting analysis of experimental observations of the dy-
namics of spreading of vapor on a hot wall. The model proposed for the BC mechanism considers the spreading
of a bubble to be governed by a balance of momentum. Nevertheless this balance of momentum is performed
using an evaluation of the bubble size at departure as equal to Agy;. This evaluation is not a priori realistic since,
according to the experimental results reported in section 1.4, the typical size at departure of the bubbles is less
by an order of magnitude at least from Agr;.

As a partial conclusion, even though the mechanism of spreading initiated by a critical value of the wall heat
flux is an interesting mechanism for the BC, the model of Kandlikar [70] in itself is nevertheless, to our point of
view, not satisfactory because it is not based on a realistic evaluation of the mechanical balance.

Recoil instability I This model is more or less of the same spirit as the Kandlikar’s model presented in the
previous paragraph. The main difference, to our point of view, comes from the description of the geometry of
the bubble, which is less rigid. Following the idea developed by Sefiane et al. [120], Nikolayev and Beysens,
[101, 100] proposed the mechanism of the BC to be related to an instability (the so-called recoil instability) at
the liquid-vapor interface of a growing bubble pinned to the wall.

The recoil instability is related to the pressure jump condition at an interface undergoing a mass transfer (cf.
the study of the jump conditions in the appendix A.2) and has been successfully used by Palmer [106] to describe
the de-stabilization of plane evaporation fronts in the study of steady rapid evaporation at reduced pressure. In
the context of the BC, Sefiane et al. [120] proposed the same destabilizing mechanism to explain the occurrence
of the BC. Let us consider a bubble growing on a hot plate. The mass transfer rate is known to be locally more
intense in a near wall region in the vicinity of the triple line. Thus, the maximum effect of the recoil pressure on
the momentum balance at the interface is located in this region. The destabilizing effect of the recoil pressure is
then supposed to induce, above a critical value of the mass transfer rate (obviously related to a critical wall heat
flux), a centrifugal force on the interface that tends to make the bubble spread instead of keep a quasi-spherical
form (which is the case when the effect of capillary forces is dominant). This is supposed to initiate a spreading
dynamics (formation of a large “dry spot” under the bubble), leading to a drying transition and therefore to be
the mechanism of the BC.

According to the complex geometry of a realistic description of such a bubble dynamics, it is not possible
(contrarily to the initial work of Palmer [106] for plane fronts) to get any result analytically. Nikolayev et al. [100]
therefore use numerical simulations of the interface balances of momentum and energy coupled with the liquid
thermal problem. These calculation, performed without gravity, actually reproduce the dynamics of spreading of
such a growing bubble and moreover establish an important dependence of this spreading dynamics on the wall
heat flux value.

However and according to the authors these numerical simulations allow to show “that at some typical time
the dry spot under the bubbles begins to grow rapidly under the action of the vapor recoil. Such a bubble
can eventually spread into a vapor film that can separate the liquid from the heater thus triggering the boiling
crisis (critical heat flux)”. Therefore the numerical simulations, proposed to illustrate the model, do not allow to
reproduce the drying transition that occurs at DNB, but only a supposed precursor event. Indeed, since the two-
phase flow is not taken into account in these numerical simulations, there do not exist any departure mechanism
that would impede this spreading dynamics. To our point of view, the model therefore proposes an interesting
mechanism for a precursor event of the drying transition that should be supplemented by taking into account the
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coupling with the bulk phases fluid mechanics to balance the spreading by a departure mechanism. The condition
of BC would therefore be the one for which the dynamics of spreading prevails on the dynamics of departure.

The original idea of Sefiane et al. [120] for the BC mechanism is based on the irregular bubble growth at high
heat fluxes leading to a partial dryness of the wall and finally, above a critical value for the heat flux to the BC
itself. The consistency of this hypothesis will be discussed as we report experimental observations of the near
wall NB process at high heat fluxes in section 1.4.

BC mechanism based on the evaporation of the liquid entrapped under a bubble In the model of Zhao
et al. [155], the mechanism of the BC is associated to the dry out of the micro-layer of liquid trapped between
the bubble and the heater. The bubble growth is decomposed into two stages: a first thermal stage followed by
a second mechanical stage. A classical calculation of the initial growth of the bubble based on the micro-layer
evaporation constitutes the first and in fact determines the initial profile (radial thickness) for the micro-layer.
During the second stage of evolution of the bubble, the micro-layer is supposed to be formed and a competition
between inertial, gravity and capillary forces (including a model of vertical coalescence with a large bubble layer
over the growing bubble) determines the dynamics of the bubble growth until its departure. During the two
stages, the total evaporation of radial crowns of the micro-layer at high heat flux causes a dryness under the
bubble. This evaporation is evaluated using an energy balance at the liquid-vapor interface of the micro-layer.
Let us note that, in this model, coalescence with a larger bubble is said to promote the departure of the bubble
and thus to prevent the wall from a possible dry-out, which is actually far from the ideas of the models based on
a critical coalescence. The unknown of this model is the typical size of a bubble after the initial stage of growing
(thermal growth). Zhao et al. [155] obtain a relation for the heat flux g as a function of local superheat and this
bubble size to describe the NB regime at high heat flux. It has a maximum in g and therefore allows to predict
the CHF as the limitation of this idealized NB regime.

In this model, and by difference with the previous other models, the mechanics determines the departure of
the bubble, whereas the spreading of the dry area is only associated with an energy balance inside the micro-layer.
The first stage of the dynamics of the bubble is only phenomenologically described. As a consequence, the size
of the bubble after its initial growth, which appears as a key parameter in the final correlation, is unknown. To
our point of view, this study needs to be supplemented by a more accurate model for this initial stage in order
to actually attest the validity of such a two-stage bubble growth dynamics and thereafter of the suggested BC
mechanism. Moreover the fact that the second stage of bubble growth is only governed by mechanics is subject
of question since it actually contradicts the most recognized model for the last stage of bubble growth which is
said to be heat-transfer controlled (e.g. [28]).

As a partial conclusion, this model for the BC mechanism is questionable according to the validity of the
two-stage bubble growth idealization on which it lies.

Purely thermal model of the BC Blum et al. [16] proposed a model for the CHF based on an initial idea of
van Ouwerkerk [145]. They postulate that the instability of the NB regime is governed by the thermal problem
of a growing dry area over a heated plate. The following thermal problem is studied. They consider the heating
element as a plate of given thickness. At the lower part of the plate, a constant heat flux, namely ¢, is imposed.
The upper part of the plate is in contact with the boiling fluid and is locally either dry or wet. This local state
of the wall-fluid interface is modeled by its temperature with the help of a limit value, say T4 for the wet-dry
transition. The surface is dry, resp. wet, if T > T4, resp. T < T,,/4. The heat exchange coefficient of the wet,
resp. dry, area is considered as given by the NB, resp. FB, part of the Nukiyama curve. In the course of time, a
point of the upper surface can pass from wet to dry or reversely according to its temperature. Now, consider an
initial circular dry area of a size D. This represents a typical foot of a bubble growing on a wall. By performing
thermal calculation inside two-dimensional plates, the authors show that there exists a critical value for g such
that the initial dry area grows without any limit. This critical value is therefore associated to the CHF.

This model actually highly differs from the previous ones because no bubble growth dynamics is considered
by the authors. Even though the use of the global correlation (either the one of the NB or the one of the FB regime
according to the local dryness of the wall) for the heat exchange coeflicient appears as an interesting idealization
of the local heat transfer process, the neglect of any fluid mechanics is to our point of view, the major default of
this model. Indeed, it is classically recognized that the mechanism of departure and therefore of re-wetting of a
dry zone is mainly governed by fluid mechanics (e.g. Buyevich and Webbon [22]). Moreover this model fails
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to explain the drying transition that still occurs at DNB for temperature controlled experiments (for the same
CHEF value of the mean heat flux extracted from the wall). Indeed in this latter case, no local increase of the wall
temperature at the location of dry areas exist. According to the model considered, no drying transition should
therefore occur. As a consequence the model is not able to explain this drying transition. In the temperature
controlled case, (if, as the authors suggested, only the very near wall process determines the drying transition
mechanism) only the mass transfer rate existing at the liquid-vapor interface and the consequent growth of the
bubble is able, to our point of view, to explain the drying transition and therefore the DNB mechanism.

As a partial conclusion, the purely thermal model of the BC mechanism is unable to explain the drying
transition that occurs at DNB. Indeed this drying transition results to either the BC for a heat-controlled system
or the transition toward TB regime for a temperature-controlled system. The model of Blum et al. [16] for the BC
mechanism fails to explain this latter situation although the mechanism of the drying transition at DNB should
be unique.

Thermal balance inside a dry spot and critical level of temperature Bricard et al. [20] proposed to investi-
gate the models of Kirby et al. [78] and Fiori and Bergles [50] for the study of the BC mechanism in sub-cooled
flow boiling. The model of Fiori and Bergles [50] considers the influence, in convective flow boiling conditions,
of the existence of a large vapor mass on the persistence of a dry area on the wall. It is not considered in the
following presentation of the work of Bricard et al. [20] since it appears only as a parametric effect on the BC
mechanism itself. The model of Kirby et al. [78] considers that in the NB regime, a nucleus of vapor is left
on the wall at each bubble departure having the form of a flat film. The subsequent dry area is then re-wetted.
Kirby et al. postulate that, at the BC, the local increase of the wall temperature at a dry location is such that
liquid is no longer able to wet this zone and that, moreover, conditions are such that the dry zone spreads over
the wall. Bricard [19] studied this model, developed a criterion for this critical wall temperature level based on
an analogy of the physical situation with the Leidenfrost phenomenon 8 and finally provided a CHF calculation
based on a heat balance in the wall under a dry patch. The Leidenfrost temperature is, according to the author,
a rough approximation for the critical value of the temperature for the dry regions since the actual situation is
obviously different. The order of magnitude is however suggested to be still valid, for water on classical steels, it
is estimated as being equal to Ty, + 150°.

The same criticism as for the previous purely thermal problem can apply to this model. Indeed the Leidenfrost
temperature is far from being reached for temperature-controlled experiments when the drying transition occurs.
Such purely thermal models will therefore be disregarded in the following.

A critical heat flux for the drying of the liquid film at the boundary of a large dry area Yagov [150]
developed a model based on the idea that the efficient heat transfer that exists at the boundary of the dry area
at the bubbles’ foot both explain the efficiency of the NB regime and “bears the possibility of terminating the
nucleate boiling”. According to Yagov [150], the origin of large dry spots is associated to the lateral coalescence
of the bubbles due to the increase of the NSD. The author considered a balance between the liquid inflow at
the boundary of such a large dry spot and the evaporation mass transfer rate at this same boundary. The author
determined the heat flux necessary to evaporate the entire film at the dry spot boundary. As the wall heat flux
reaches this critical value, the dry-out of the heater is assumed and therefore we are in conditions of the BC.

The main differences between this model and the models based on the recoil instability, are first that the dry
spot are said to originate from a lateral coalescence and secondly that the spreading of the dry spot is supposedly
governed by the balances of mass and energy and is therefore independent from the balance of momentum. The
main default of this model is that it does not consider any departure mechanism that should impede the initiated
spreading, which is, to our point of view unrealistic.

Conclusion concerning the analysis of the BC mechanisms related to the “local” scale NB mechanisms
We have presented the models for the BC mechanisms that considers some irregular bubble growth events as the
origin of the drying transition. The models of Kandlikar [70] and Nikolayev et al. [100] based on a spreading

8This phenomenon is also commonly known as the calefaction. Leidenfrost [84] first brought to light this effect: a small liquid drop
deposited over a sufficiently hot wall does not fall and wet the wall but rather levitates over it. The evaporation flow at the surface of the
drop that faces the hot wall forms an air-cushion between the wall and the drop. The reader interested can refer to the excellent article of
Biance et al. [15] for more details.
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of bubbles initiated by the recoil instability (original idea of Sefiane et al. [120]) as well as the model proposed
by Yagov [150] have been shown to be not sufficiently complete. Indeed no mechanism of departure is considered
that should balance the initiation of the spreading of such an irregular bubble. The relevance of the main hypoth-
esis (mechanical instability leading to the spreading of the bubble) with regard to the experimental observation
of the NB regime at high heat fluxes will be studied in the following section. The models of Blum et al. [16]
or Bricard [19] based on purely thermal criterion for the initiation of spreading of a dry area have been shown
to fail to explain the drying transition at DNB and that leads to the transition toward the TB regime. Since the
DNB transition is the more general phenomenon that leads to the BC in the case of heat controlled experiments,
the models related to such a thermal criterion are disregarded in the following of this study.

1.3.4 Conclusion on the presentation of the models for the BC mechanism

Some other open questions We have deliberately presented first the NB process in the context of a pool
boiling set-up with an imposed wall heat flux g. It is worth noting that this configuration differs from industrial
heat exchangers mainly because of the non-existence of any transient phenomenon in the power supply and of the
absence of any convective flow. The validity of the previous developments lies indeed on an important modeling
hypothesis. In other words there exists another open question about the nature of the BC phenomenon: Is the BC
independent of the flow configuration?
The fact that different instabilities could trigger the drying of the wall according to the set of dominant physical
mechanisms at play in the NB process is indeed not trivial to answer. Our point of view is that the mechanism
is unique. This assumption is based on the following argument. Let us consider the evolution of the CHF with
regard to a given parameter, say Z (such that for example the convective mass flow rate, the mean void fraction,
the wetting properties of the fluid on the hot wall, or the sub-cooling). The curve CHF(Z) is relatively smooth
and of constant slope (cf. chapter 12.5 of [28] or the review of the parametric trends of the CHF value by Celata
[30] based on 2000 data points). If one assumes that the mechanism is modified by changing the configuration,
one would have expected a clear modification of these curve: discontinuity of the value of of the slope. Such a
modification is not observed.

According to our hypothesis of the existence of a single mechanism for the BC, the pool boiling configuration
is the most relevant and simple configuration to study to understand the BC.

A parte for the sake of generality It is worth noting that Sakurai [118] proofed the existence of two mech-
anisms for the transition toward TB in experiments of transient heating (increasing wall heat inputs, exponential
in time, in pool boiling). In this case the parameter Z considered is the characteristic time 7 of the heat input
(g = ¢'/"). However, the existence of two mechanisms is attributed to the fact that, according to the characteristic
time 7 , we observe either a direct transition from a non-boiling state to TB (which corresponds to small values
of 1) or a “double transition”, first from non-boiling to NB and then to the transition from NB to TB, of interest
in this study (which corresponds to larger values of 7).

Toward the motivation for an analysis of the local scale phenomena The issues associated to the under-
standing of the BC mechanism has been until this point, deliberately widely open. It has been illustrated by the
variety of types of mechanisms in the NB process and subsequently of the types of models developed for the
BC mechanism, that a lot of questions about the BC are still open. Indeed it has been shown by the analyze of
the BC models that a vast majority of the supposed mechanisms are not attested experimentally or even contra-
dictory with some experimental results. It is worth noting that a better understanding of the BC phenomenon is
constrained by an improvement of the knowledge of the process through experimental observations as it has been
stated by Sadavisan et al. [117] among others.

In the following, we present our analysis of a model of the CHF as being related to an instability at the
local scale. Let us justify our choice to focus on the analysis of the local scale models instead of any other
choice among all the tracks that need to be pursued. Recently there has been an important improvement in the
observation of the near wall process (reported in section 1.4). The re-examen of the local scale mechanisms for
the BC in view of these results is therefore necessary. Such a work should provide an improved understanding
of the different models for the BC. As mentioned by Chung and No [37]: “The current CHF models are mainly
based on the postulation on the CHF phenomena without physical observation. The new CHF models need to be
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consistent with the direct observation on CHF. Also, as several investigators suggested [59, 117], a realistic CHF
model would be the one that gives a natural outcome for the description of the high-heat flux nucleate-boiling
region in contrast to the traditional view of CHF as independent phenomena distinct from the nucleate boiling”.
We therefore begin by reporting some experimental observations of the near wall process that could help us to
determine such a model.

1.4 Report of experimental observations

In this section, we present some recent results of experimental observations that allow to get a more precise
knowledge of the NB regime at large heat fluxes (i.e. close to the BC conditions). These results focus mainly
on the description of a very near wall region that is very difficult to visualize without any advanced experimental
techniques. The reader interested by this experimental problematic can refer to the work of Kenning [76].
Based on these observations, we then present an analysis, of a near wall mechanism of instability that is

* consistent with these experimental observations
* a potential mechanism for the BC
* consistent with the successful Zuber’s correlation

This section is organized as follows. In a first part (see section 1.4.1), we report some experimental observa-
tions, which provides a representation of the NB process in pool boiling near BC conditions®. It is shown that the
hypothesis of scale separation between the two-phase flow scale and the bubble production zone is justified. Then
we report the observation of some local drying events that occur for wall heat fluxes less than the CHF and that
are identified as precursor events of the drying dynamics that leads to the BC. It is then shown that these drying
events are associated with irregular behavior during the bubble growth process at the wall. In a second part (see
section 1.4.2), we postulate that these observations actually correspond to the BC mechanism. This leads us to
consider the mechanism for the BC to be related to the “local” length scale and we discuss an interpretation of
the Zuber correlation at this scale.

1.4.1 NB regime at high heat fluxes

In this section, we report some experimental observations that allow to determine the validity of the scale sep-
aration hypothesis made for the classification of the BC mechanisms. They allow above all to specify the near
wall NB process at BC conditions. In a first part, we report lateral visualization of the NB process. Different
layers are clearly distinguished. Then we supplement the description of these layers by the report of void fraction
measurements. In a second part, we report experimental observations of the local dryness of the wall near BC
conditions using different experimental techniques and/or heating modes (g or T, controlled). Finally we provide
a synthesis of these observations that allows to describe the NB process near BC conditions. This will be used to
deduce an elementary target problem whose study can provide a gain in understanding of the BC mechanism.

The basic picture from a lateral visualization

Comments on the nature of the pool boiling experiments for the two first experiments reported In the
first two parts, we present the NB process at high heat flux observed in pool boiling experiments using refrigerants
as the boiling fluids. According to the low density contrast between their liquid and vapor states (o;/p, ~ 200
to be compared to water at atmospheric pressure p;/p, =~ 1000), these fluids allow an easier visualization of the
NB process. Special caution has been taken by the authors so that their boiling apparatus (the heated wall is very
reduced in its lateral dimension) does not induce specific mechanisms and that the observed value of the CHF is
actually well predicted by the Zuber correlation.

°It is worth noting that some other very interesting results about the local mechanisms of the NB process are presented by Rule and
Kim [116], Yaddanapudi and Kim [149], Demiray and Kim [44] among others. They are not reported here because they do not concern
the near BC conditions of interest in this study.



24 CHAPTER 1. STUDY OF NUCLEATE WALL BOILING NEAR BOILING CRISIS

Near wall NB process A lateral picture of the NB process is obtained by Nishio et al. [102] that is
reproduced on figure 1.5. Those pictures correspond to the NB process at a heat flux closed to the CHF
(g = 0.92 CHF). One the left hand side (LHS) picture, a sequence of several snapshots (taken at 1000 frames/s)
of the NB process are represented, the time between them being given under each snapshot in milliseconds. On
each snapshot, the vapor bubbles can be identified as the black forms over a white frame (continuum of liquid).
At the bottom part of each picture, the wavy black line corresponds to a liquid-vapor interface, the liquid phase
being on the upper side of this line. By considering the sequence of snapshots, it can be seen that several big
bubbles are generated from a quasi-continuous film of vapor that exists above the wall. It is worth noting that
these big bubbles, by their size and spatial spacing, can be identified as being generated by a Rayleigh-Taylor
instability on the surface of the vapor film. This part of the picture is therefore consistent with the idealization
made by Zuber for the generation of bubbles. Let us now consider the right hand side (RHS) picture. It corre-
sponds to a close-up picture of the LHS process in a region very close to the wall. The scale is such that the upper
part of the RHS picture corresponds more or less to the unclear dark region at the bottom of the LHS pictures.
The white continuum on top of the RHS picture is therefore the big vapor mass (film-wise bubble on the picture)
whose upper boundary is the wavy thin black line on the LHS pictures and whose bottom boundary is the thick
black line on the RHS picture. Under this big vapor mass, there exists a liquid film, that itself contains bubbles
like the one clearly identified by the arrow. Therefore, even though from a far point of view (LHS pictures),
vapor covers the wall, there still exists a continuous liquid film in contact with the wall. Inside this liquid film,
numerous bubbles are generated that coalesce to form the vapor film. In a following paragraph we study the
nature of the fluid-solid contact for such an high heat flux.

(f) t=28ms

Fig. 14. Dynamic behavior of filmwise bubble (W = 0.5
mm, H =2 mm, g = 0.92g.4¢).

Fig. 15. Close-up picture of liquid film under filmwise bubble
(W =0.5mm, H=2mm,q = 0.92gcy).

Figure 1.5: Lateral visualization of the NB process reproduced from [102]

As a consequence of these observations, the big bubbles that can be observed as flowing outward the wall
are not the bubbles generated in the very near wall region. Indeed, as they detach from the wall, the bubbles first
coalesce with each other and form a big vapor mass above the wall. This vapor mass is not a continuum since
liquid is still able to reach the wall. From this big vapor mass, and due to the RTI, big bubbles actually flow
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outward the wall'®. Moreover the growth of the bubble pinned to the wall actually appears as independent of the

above bubbly two-phase flow which justifies the scale separation.

Two-phase flow scale at CHF Let us now consider the experimental results of Chung and No [37] who
somewhat used a similar boiling apparatus and visualization technique. Their study provide somewhat similar
lateral visualizations of the NB process to the LHS pictures of figure 1.5 described in the previous paragraph.
However, their study provides also a visualization of the boiling process before, when and after the CHF is
reached (cf. figures 1.6). It is worth noting that the visible transition in the boiling process takes place rather in
the near-wall region than in the two-phase flow scale region. No noticeable change can be identified between
post- and pre-CHF observations of the two-phase flow configuration above the vapor “film” that could attest any
regime transition at this scale. This result therefore contradicts the hydrodynamic theory and confirms the near
wall region as being the location of the BC mechanism.

Void fraction measurements In order to attest the validity of the previous observations, it seems interest-
ing to compare those results with those obtained by Auracher and Marquardt [7] with other fluids such as the
refrigerant FC-72 and the isopropanol and in other experimental conditions. In this case, lateral observations of
the flow are, to our knowledge, not available. The authors provide void fraction measurements at high heat-fluxes
up to the CHF. It is worth noting that contrarily to the previous results, the wall temperature (7') is imposed (in-
stead of the heat flux ¢) and that they actually observed the TB and thus the drying transition that occurs at DNB.
Their results attest the existence of a layer in the very near wall region that is must richer in liquid (corresponding
by analogy to the liquid film with bubbles in the previously presented results) than the layer just above it that
is very rich in vapor (corresponding by analogy to the vapor “film”). This attests therefore the validity of the
picture of the NB process at high heat fluxes proposed in [102] or in [37].

BC and precursor local drying events In the following, we report experimental observations about the nature
of the fluid-solid contact during pool boiling experiments in the NB regime near and at CHF. It is worth noting
that such drying events have been reported by experimentalists from a long time (cf. [56], [145], or [152] among
others). Here we refer to experimental observations obtained using more recent techniques, that provide a more
quantitative and accurate description of these events.

Theofanous et al. [130, 131] studied experimentally the pool boiling of water at atmospheric pressure. Using
a sub-micron metallic film deposited on a glass as a heater, the authors have been able to visualize, among other
quantities, the wall temperature field, i.e. T instead of (T'), using infrared thermographic techniques. Such maps
of the temperature field are reproduced on figure 1.7(a) for different wall heat fluxes g (namely from left to right
g = 406, 536, and 807 kW m~2, whereas the CHF value is about 1 MW m~2 in these conditions). Black, resp.
white, regions concerns low, resp. high, levels of wall temperature. The nucleation and bubble growth events can
be identified by low temperature regions of circular form as it can be seen on the LHS picture of figure 1.7(a).
The low temperature is associated with the very efficient heat transfer process of the phase change phenomenon
that takes place as the bubble forms and grows. To our point of view, one of the most interesting results of this
study is the observation of the temperature field under a growing bubble at wall heat fluxes near BC conditions.
In these conditions, it can be seen (cf. the RHS graph on figure 1.7(a)), at the center of the low temperature region
(associated to a bubble growth event), a circular zone of very high temperature that has been clearly identified
with a dry region (cf. the study in [130]). On figure 1.7(b) is reproduced a sequence of such a bubble growth
event. At the beginning (LHS top picture) the dark region is the cooling associated to the beginning of the bubble
growth event. At the center of this low temperature region it can be seen on the next pictures a white circle (high
temperature) that first grows and then shrinks before the bubble finally departs (last picture bottom RHS). The
graph on the RHS represents the time evolution of the temperature at the center of the hot and dry zone. The
particularly high levels of temperature (up to 7', + 130°) reached at this point allow to clearly identify this region
as being dry. The authors reported the dynamics of such dry spots and their analysis allows to draw the following
conclusion:

* Such drying events occur more frequently as the wall heat flux increases and as the wall temperature is
initially locally higher and not surrounded by previous bubble nucleation events

10As a consequence, the evaluation of the bubble size at departure from the wall made by Kandlikar [70] appears actually as irrelevant.
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Fig. 9. Side views of bubble structures at local vapor film regimes (g = 0.9 ).

(e) 28 ms (1 32 ms

Fig. 12. Side views of dynamic behavior ol bubbles at CHF.
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Fig. 13. Side views of dynamic behavior of bubbles just after CHF (g = 1.06¢cur).

Figure 1.6: Lateral visualization of the CHF reproduced from [37]
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* For (relatively) low heat fluxes, the spreading-shrinking dynamics of the dry area follows the mean bubble
cycle.

* At higher wall heat fluxes, some of the drying events are much more violent and, even though they finally
do not lead to the dry-out of the wall, their characteristic life time and size are no longer correlated to the
mean bubble cycle, i.e. drying events have their own dynamics.

* At the CHF, such a dry spot begins to spread without limit, finally leading to the burnout of the wall. Such
a behavior is reproduced on figure 1.7(c).

In the following, we consider other experimental results that attest the validity of these observations with
different boiling configurations.

The boiling apparatus used by Chung and No [37] allows to get information about the wetting of the wall
through optical measurements. The boiling fluid is a refrigerant and the heated wall is a sapphire plate covered
by a transparent electro-conducted film. The authors also report that they identified the dry spots events with
nucleation events.

Buchholz et al. [21] performed pool boiling experiments with saturated iso-propanol” . Contrarily to all the
previous experiments (except [7]), the wall temperature (T') (instead of the heat flux ¢g) is controlled. Time depen-
dent temperature fields are calculated using a net of thermocouples installed inside the heater. It is worth noting
that, before CHF is reached, large drying events can be identified through the temperature fields measurements.
Since temperature is controlled, the nucleation points, resp. the dry areas, correspond to slightly lower, resp.
higher temperature regions than in the experiments of [130, 131] (of the order of 1K with respect to the mean
temperature value instead of few tens of Kelvins) but are still clearly identifiable.

111

Conclusion about these experimental observations The NB process at high heat fluxes has been described in
more details using experimental observations of pool boiling experiments. The near-wall region has been shown
to consist in

* a thin liquid layer in contact with the wall where nucleation events and bubble growth take place;

* a very rich vapor layer created by the coalescence of the bubbles that form in the liquid film, this layer is
obviously discontinuous since the feeding of the underneath liquid film is maintained.

* above this rich vapor layer, a bubbly two-phase flow region exists, bubbles are generated by the RTI
occurring at the upper surface of the vapor layer.

It has been shown that somewhat large drying events can exist before CHF, i.e. without leading to the DNB. The
triggering of these drying events is associated with nucleation events and leads, at sufficiently high heat fluxes, to
“irregular”’'? bubble growth with respect to the mean (or “regular’’) bubble growth events. At CHF, one or several
of these dry spots suddenly spread over the wall, leading to the DNB. These irregular bubbles are not associated
with bubble coalescence, since they occur preferentially in regions not previously populated by other nucleation
events. These regions correspond therefore to high liquid superheat.

In the following, we interpret these experimental results to determine a potential mechanism for the BC.

1.4.2 Interpretation of the experimental results: a local interpretation of the Zuber correlation

In the following, we postulate that the experimental observations of drying events reported above are actually re-
lated to the drying transition that occurs at the BC. Let us justify this postulate. It is worth noting that even though
these results have been obtained with particular experimental set-ups (especially concerning the wall thermal and
aspect characteristics), the CHF is of the same order of magnitude as for more classical pool configurations (i.e.
well predicted by the Zuber correlation). As a consequence, the specific configuration is assumed to have only a
parametric effect on the CHF value, and therefore the mechanisms of the BC is assumed not to be modified by
the configuration.

"'These results correspond actually to the same set of experiments as in [7] whose void fraction measurements have been reported in
the previous study of the basic picture from a lateral visualization.

12We here reproduce the distinction between regular and irregular bubbles introduced in [130] to characterize the experimental obser-
vations of the bubble growth processes.
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Fig. 11. IR thermometry images of a fresh heater (FI) at three dif-
ferent heat fluxes, ¢ = 406, 536, and 807 kW/m?.
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Figure 1.7: Wall temperature at high heat flux NB regime, figures extracted from [130, 131]
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Let us now examine the consequences of our postulate. The precursor drying events have been said to
originate in a nucleation event and to be related with the growth of a bubble pinned to the wall. Therefore, the
drying transition at the BC must be related to a certain mode of bubble growth on a heated wall, that is activated
only for NB regime close to the DNB conditions (i.e. for the two types of controlled experiments considered,
either wall temperature or wall heat flux imposed uniformly). This contradicts therefore the hypothesis that the
dryness is associated to coalescence phenomena in a near wall region, which is the other common postulate 3.

Rewriting of the Zuber correlation For the sake of simplicity, we will not use the original Zuber formula (1.1)
but rather a simplified formula that reads

T
qCHF Zuber = ﬁL \ O-gplpg (12)

Both formula (1.1) and (1.2) are equivalent as long as the density ratio satisfies p;/p, > 1 which is the case
for the boiling fluids considered. Let us decompose this formula using the widely used energy balance at the
interface (cf. our study of the jump conditions in the appendix A.2) ¢ = I' £, where I is a mass transfer rate and
L is the latent heat of vaporization. Let us also introduce, instead of the RTI wavelength Arr;, the most generic
capillary length A, defined as

o
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Thus the Zuber correlation can be written as x

No=—
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where the non-dimensional number N is defined as
No = _F2 Aeap
PO

It is worth noting that, using this writing, it appears as natural to consider the Zuber correlation at different length
scales since two of the three basic elements it is made of, namely the capillary length, and the interface energy
balance, are characteristic of the analysis of any boiling system. The third one, which is the non-dimensional
number Ny, needs to be more specifically studied.

Different scales, different interpretations In the original context of the Zuber model, I' is the mean transfer
rate of the NB process and is therefore related to a mean vapor flow rate and thus to the velocity V,, of the vapor
flow across the liquid. Let I reads as p, V,, then N refers to the classical non-dimensional critical parameter for
the Kelvin instability. Let us now consider models at the “mean bubble growth” scale where bubbles keep their
integrity in the model of the NB process. When considering a bubble instability, 4., is the bubble diameter, and
I' = p, V, where V, refers to the velocity of individual bubbles rising in the liquid. In this case Ny refers to the
classical Weber number. It is actually a Weber number that used Chang [32] in the derivation of his correlation
for the CHF, that is equivalent to the Zuber’s one. When I' is related to a local mass transfer rate at a liquid-vapor
interface, the block I'?/p, is the measure of the recoil force, which is the destabilizing force in the idea of Sefiane
et al. [120]. This explains the result of Kandlikar [70]. Let us also mention the model of Mokrushin [96] (not
reported here) that considered a balance of force acting on the film of liquid trapped under a growing bubble
(micro-layer) as determining the occurrence of the DNB drying transition. Its resulting correlation for the value
of the CHF is similar to the Zuber correlation. According to Mokrushin [96], and to our own point of view the
agreement between all these expressions for the CHF ““is not surprising. It shows that the principal forces acting
on the vapor bubble were accounted for in [all] cases.”.

The two interpretations of the Zuber correlation (at a global or local scale) can be represented by the two
following diagrams. At the bubble scale A, defined by the competition between surface tension, the drying

BThere is a long history of debate on this point, already revealed in the 50’s of the twentieth century by Jakob [64]: “whether the
spheroidal state is always initiated by coalescence or is spontaneously initiated will be difficult to decide”. The spheroidal state is the
ability of a liquid not to contact a hot wall, i.e. the calefaction, (¢f. the footnote 8 on page 21). Let us note that, in the case of rapid
transients, the spheroidal state has been observed to spontaneously initiate (¢f. Sakurai [118]). This at least proves the ability of this state
not to be always induced by coalescence.
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transition being governed by a competition between recoil and capillary forces, whereas the departure dynamics
is governed by buoyancy and capillarity. At the flow scale the gravitational and surface energies defines the
length scale Agr;. For this type of scales, at CHF a wave of typical length Agr; is destabilized by a flow of kinetic
energy m V? (existence of a critical Kelvin or Weber number according to the fact the bubbles keep their integrity
or not).

o/R o
V W RTI wjn or Weber
ApgR 2 A(1/p) mgR mV?
AP at the “local” scale Energy scales at the “two-phase flow” scale

It has been shown how to relate the Zuber correlation to mechanisms for the BC at different scales. As a
consequence, and since interesting experimental results have been shown to be related to the “local scale”, it
seems all the more interesting to focus on a study of the potential mechanism of the BC at this “local” scale.

1.4.3 Conclusion on the study of local observations

According to the experimental observations presented in the beginning of this section, the NB process at high
wall heat flux has been specified. Some local drying events have been identified as related to irregular bubble
growth events leading at CHF to the dry-out of the wall. These events have been related to a very near wall scale,
and therefore it has been postulated that this scale was the scale of the BC mechanism. The Zuber correlation,
that allows to predict the CHF with a good accuracy, has been related to an interpretation at different scales,
including this local scale. As a consequence the Zuber correlation is not associated with the “two-phase” flow
scale at which it has been initially associated. In the following, we study a way to get an improved understanding
of the BC mechanism by studying the spreading dynamics of the dry area that forms under an irregular bubble.

1.5 Study of the instability of a bubble growth on an hot wall leading to the
spreading of a dry spot

The goal of this section is to define an elementary target problem whose study could help to understand the basic
mechanisms of the BC. Since it has been shown in the previous sections that it was justified to consider the
mechanism of the BC as being related to an irregular bubble growth event, we therefore propose to study this
phenomenon.

This section is organized as follows. First we define a BC mechanism at the “local” scale consistent with
the experimental observations and for which the governing physical mechanisms are consistent with the Zuber’s
model. We analyze this model in comparison with the other BC models that have been shown in section 1.3 to
be related to the dynamics of a dry area. Then we propose the numerical simulation of a bubble growing on a hot
wall as an interesting subject of study in order to clarify the competition between the spreading and the departure
dynamics.

1.5.1 A scenario at the DNB conditions

In order to illustrate the possible gain in understanding for the potential mechanism for the BC at the local scale,
we study a BC mechanism based on the spreading of a dry area located under an irregular bubble. Several
models have been reviewed in section 1.3.3 for such a BC mechanism. These models have been criticized in
section 1.3.3, we consider again this criticism in view of the comparison with the model proposed and show how
it allows to overcome their limitations.

A BC mechanism The corresponding BC mechanism is represented on figure 1.8. The initial configuration
considers an irregular bubble (central picture of figure 1.8) that has a large dry area at his foot (as it has been
observed in [130]). The origin of this irregular behavior can be related to the recoil instability as suggested
by Sefiane et al. [120] and shown by the numerical results of Nikolayev et al. [100]. Its latter evolution is then
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supposed to depend on the wall heat flux g. Either g < CHF, the bubble stops to spread and finally departs from
the wall (RHS picture of figure 1.8). We are therefore still in the NB regime. Or ¢ = CHF (DNB conditions)
in which case the bubble continues to spread along the wall and as a consequence begins to form a thin vapor
film in contact with the wall (LHS picture). The further evolution of this film depends on the wall heating mode.
If the temperature is controlled, the film locally breaks down under the action of the RTI. As a consequence we
observe a succession of large drying events and of re-wetting events. This spreading dynamics is supposed to still
exists for higher wall temperatures, this corresponds actually to the classical TB regime (bottom LHS picture).
At MHF, the temperature of the wall is classically considered as sufficiently high in order the vapor film not to be
broken by the unset of the RTI. As a consequence, if the heat flux is controlled at DNB conditions, the wall below
the vapor film that establishes becomes rapidly hot (as observed in [130]) and its temperature rapidly becomes
larger than the MHF’s value. Therefore, the film is not destroyed by the unset of the RTI, the RTI is at the origin
of a bubble release process. The wall keeps in contact with a continuum of vapor and its temperature is large.
This situation corresponds to the FB regime (top LHS picture).

FB

DNB NB

\

— N\

Initial configuration
Irregular bubble

Figure 1.8: A BC mechanism at the “local” scale

Comparison of this local mechanism for the BC with regard to the previous models at the ‘“local” scale
Let us consider the main differences between the proposed BC mechanism and the models for the BC reviewed
in section 1.3.3.

The explanation of the drying transition toward TB regime Let us note that the criterion of a sufficiently
large wall temperature under the vapor film only concerns the stability of the drying transition (TB or FB regime)
but not the drying transition itself (DNB). This hypothesis is therefore different from the ones suggested in [16]
or [19] and actually allows the mechanism to explain both the transition toward FB and TB regimes as the wall
heat flux reaches the value of CHF.

Departure versus spreading It is important to note that for this scenario of the BC mechanism, DNB con-
ditions corresponds to the condition when the spreading dynamics is no more balanced by a departure dynamics.
As a consequence, DNB conditions are not the conditions when the spreading initiates (as supposed in [100]).
The interpretation of the DNB event is fully consistent with the experimental observations of Theofanous et al.
[131] since drying events have been actually observed at NB conditions below the CHF.

Target problem The balance between spreading and departure of an irregular bubble has been shown in sec-
tion 1.3.3, not to be captured by the previous attempts to model irregular bubble growths (namely the models
studied in [70] or in [100]). As a consequence, it remains, to our point of view, of primary interest to be able to
model this competition. In the following we consider a way to study this elementary target problem.



32 CHAPTER 1. STUDY OF NUCLEATE WALL BOILING NEAR BOILING CRISIS

1.5.2 Numerical simulation as a way to gain in understanding for the basic mechanism occur-
ring at DNB

It is worth noting that since “local” scale mechanism have to be taken into account and moreover since the
geometry of irregular bubbles is supposed to be complex during its growth, the use of analytical models for the
study of the dynamics of such an irregular bubble is out of reach. We rather propose to follow the approach
of Nikolayev et al. [100] who used numerical simulations to study the initiation of the spreading dynamics.
However since the numerical method used in [100] neglects the mechanisms of departure of the bubble, it needs
to be supplemented. To study our target problem, we therefore need to consider a more complete model for the
bubble growth that includes the whole two-phase flow dynamics. As a consequence, we turn our attention toward
numerical methods able to solve the non-isothermal liquid-vapor flows with phase change at the local scale.

The use of numerical simulation is not expected to provide a gain in understanding in itself. However, once
a given mechanism is supposed, numerical simulation provides an interesting tool in order to attest the validity
of the assumptions. It has been said previously that performing experimental measurements at high heat flux NB
is a hard and touchy task. The use of numerical simulation as numerical experiments is therefore motivated also
by this limitation of use of other experiments.

To solve the problem of the bubble growth, the numerical method must obviously be based on a model for
the non-isothermal liquid-vapor flows with phase-change. The main physical phenomena the numerical method
should be able to reproduce read

1. two phase flow induced by recoil, buoyancy and capillarity
2. conductive and convective heat transfer at least inside the liquid phase
3. interface jump conditions

(a) energy balance: latent heat
(b) momentum: recoil and capillary forces

(c) mass: phase change induced flow
4. ability to treat the triple line (contact between solid, liquid and vapor)

It is worth noting that the compressibility of the bulk phases is not considered as a key parameter for the de-
scription of the NB flows. Indeed, even though it classically plays a major role only in the nucleation stage, e.g.
[28], compressibility of the liquid and vapor does not appear neither in the main physical mechanisms of the
NB regime (cf. our presentation in section 1.2) nor in all the BC models considered (cf. in section 1.3) or more
especially in the Zuber correlation for the CHF. As a consequence, and in order the numerical method not to be
un-necessary complex, the ability of the model to take into account the compressibility of either the liquid or the
vapor phase is not required. The neglect of compressibility of the liquid and vapor phases will be shown to lead
to an interesting simplification in the numerical methods. These methods are reviewed in the following chapter
in view of their application to solve the target problem defined in the present chapter.

1.6 Conclusion on the study of the BC mechanism

In section 1.1, we have defined the boiling crisis (BC) as a departure from the nucleate boiling regime and
justified the interest of studying such a phenomenon. The BC mechanism is nowadays not well understood
although its understanding is of primary interest for the study of the nuclear power plants safety as well as for the
understanding of the boiling process at high heat flux in general. We have in section 1.2 introduced the different
physical mechanisms that actually play an important role in the NB regime at conditions near the BC and that
could a priori be related to the BC phenomenon. These different mechanisms have been classified according
to three different length scales corresponding to three different levels of description of the NB regime. Indeed
according to the BC mechanism considered, a different level of description of the NB regime is required. We
have reviewed in section 1.3 the different BC models. The analysis of the different BC models has revealed the
lack of understanding of the nature of the BC phenomenon. Indeed no experimental evidence can sufficiently
support any BC model and that for each level of description of the NB regime considered. As a consequence,
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experimental investigations need to be pursued in order to get a real improvement in the understanding of the BC.
Nevertheless there has been recently an interesting improvement in experimental techniques that allows to gain in
understanding of some NB mechanisms near BC conditions in a very near wall region. We have analyzed these
mechanisms in section 1.4 in order to evaluate the consistency of the BC models with regard to experimental
observations. The following conclusions have been drawn:

* there exists actually a valid scale separation between the near wall region where bubbles first nucleate and
grow as they are still pinned to the wall and a far wall region where larger bubbles flow inside a continuum
of liquid and whose size is dictated by the RTI

* local drying transitions of the wall occur in the NB regime for heat fluxes below the CHF value and have
been identified as precursor events of the larger drying transition that occurs at DNB.

* these local drying events are associated with irregular bubble growth events and are a priori not related to
any lateral coalescence event

As a consequence the location of the BC mechanism has been related to a very near wall region where these
irregular bubble growths take place. These irregular bubbles can only be modeled with the help of a high level
of decription of the NB regime corresponding to our “local” scale. Moreover it has been shown that the Zuber
correlation, that allows to well predict the value of the CHF and that is initially inherited from a description of the
NB regime at the “two-phase flow” scale, is in fact not associated with any particular level of description of the
NB regime. As a consequence, the study of the NB regime at the “local” scale has been shown to be of primary
interest for the understanding of the BC phenomenon.

Based on these results, we have thus proposed to study a BC mechanism at the “local” scale that is consistent
with the experimental observations reported in section 1.4. In section 1.5, we have defined such a mechanism for
the BC. This mechanism is based on the competition between the spreading dynamics of an irregular bubble (that
can be related to the recoil instability proposed in [70, 100, 120]) and the dynamics of departure of this bubble
from the wall (that can be related to the combination of both capillary and gravity forces). It has been postulated
that at DNB conditions the spreading dynamics is no more balanced by the departure dynamics, leading to a
drying transition (the establishment of a thin vapor film in contact with the wall). This mechanisms has been
shown to be consistent with the experimental observations and to be able to explain both the transition from the
NB regime toward the TB and FB regimes. Moreover the main physical mechanisms involved are consistent with
the successfull Zuber correlation.

As a consequence, to attest this BC mechanism or at least to provide a gain in understanding of the mech-
anisms of the high heat fluxes NB regime, the study of the growth dynamics of an irregular bubble has been
proposed as an interesting target problem. Due to the complex and time dependent geometry of such a bubble,
the use of numerical simulation has been proposed to study this problem adequatly. Moreover we have specified
the main physical phenomena that the numerical method used should be able to reproduce. It is interesting to
note that it is a priori not required to deal with a compressible model of the liquid and vapor phases.

In the following, we review the available numerical methods for the resolution of the liquid-vapor flows with
phase-change and introduce our motivation for the development of a new method.
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Chapter 2

Solving the nucleate boiling flows, a review

In this chapter, we study the different numerical methods allowing to study the dynamics of a bubble growth.

This chapter is organized as follows. First we introduce the problematic of the solving of the bubble growth
dynamics. We then consider the different numerical techniques allowing to solve this dynamics (see section 2.1).
Each of them has advantages and limitations. We redirect our attention on the numerical methods based on
diffuse interface models and motivate this choice. In section 2.2 we consider the ability to use the classical van
der Waals model for the study of the boiling flows of interest in this study. We show that the use of the van
der Waals model for such a mesoscopic problem is too limited. We therefore consider another family of diffuse
interface models based on the introduction of an abstract “order parameter” for the description of a two-phase
system: the so-called phase field models (see section 2.3). We present the main features of these models and their
ability to provide a much more useful regularization of the boiling problem than the van der Waals model as soon
as mesoscopic studies are targeted. We then specify the main properties such a model should satisfy in order to
envisage numerical simulations of the nucleate boiling flows. The phase field models devoted to the description
of the liquid-vapor phase transition are then reviewed and it is shown that none of the existing models actually
satisfies the whole set of required properties. As a consequence we propose in the next chapter to derive new
phase field model devoted to the study of the nucleate boiling flows.

2.1 The boiling as a free boundary problem

In this section we study the main families of numerical methods devoted to the study of nucleate boiling flows.
They are mainly of two types according to the mathematical representation (either explicit or implicit) of the
liquid-vapor interface. We first consider the methods using an explicit representation of the location interface
and then the one using an implicit representation of the location of the interface.

2.1.1 Necessity of a specific numerical treatment of the interface

In this section, we establish the necessity of a specific numerical treatment of the liquid-vapor interface to solve
the boiling flows and introduce the main mathematical techniques for the representation of the interface.

The governing equations of the nucleate boiling flow The boiling fluid is locally either liquid or vapor. From
the mathematical point of view, the two phases can be considered as a field that has two single phase regions,
with moving boundaries that separate the phases. The differential equations, say the Navier-Stokes equations,
hold for each of the fields separately, but cannot be applied to the whole field without violating the condition of
continuity at the boundaries of each of the fields, the interface location. These boundaries, i.e. the geometry of
the interfaces is unknown a priori as a function of time and space. At the interface a set of jump conditions are
actually satisfied, the Rankine-Hugoniot jump conditions. These jump conditions are studied in the appendix,
section A.2. The main problematic of solving the boiling flow is thus to take into account the interface as a
moving boundary. Let us consider the mathematical representation of the interface.

35
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Representation of the interface location The location of an interface x; in a three space dimensions system
can always! be related to the location of a surface. The mathematical description of a surface can be either
explicit, i.e. x; = f(¢), or implicit, i.e. F(x;,t) = 0, where x; denotes the position of the surface. This distinction
is at the basis of two families of numerical method for the solving of the boiling flows. In the first family, the
explicit representation of the interface is used which implies to track the surface along the numerical simulation.
The corresponding methods are therefore denoted tracking methods. They are presented in the next section. In
the second family, the implicit representation of the interface is used. The field F is not unique and only its zero
iso-contour determines the location of the interface. As a consequence the location of the interface is only a part
of the field F. The knowledge of the field F is sufficient to “capture” the interface location. The corresponding
methods are denoted “front capturing” methods. Since the definition of F can be extended to the whole two-phase
system as an Eulerian field, F' can be numerically treated as any other physical main variable of the two-phase
fluid description and there is no need to use a specific numerical discretization for the interface. These methods
are presented in section 2.1.3 and following.

2.1.2 Explicit tracking of the interfaces

When the interface is represented explicitly, its location is tracked with the help of a moving mesh. There
exists two main ways of tracking the interface dynamically. Either a part of a the discretized elements used for
describing the physical domain represents the interface, or a moving additional Lagrangian grid is superposed
to the fixed Eulerian grid. In the first case, the method is either purely Lagrangian or mixed (methods arbitrary
Lagrangian Eulerian, ALE). In the second case, the resolution on the Eulerian grid must be coupled with the
time dependent position of an additional Lagrangian grid which represents the interface. These are the so-called
front-tracking methods.

Lagrangian and ALE methods The most inconvenient feature
i ; * ' 77 of the purely Lagrangian methods is that the mesh becomes rapidly
1 highly distorted. As a consequence they, are to our knowledge, not
1applicable to the study of the liquid-vapor phase change simula-
] tions. For the second category of method, namely the ALE meth-
ods, cf. [27], a particular sub-element of the mesh is associated to
the interface as represented on the figure on the left. The interface
being of time dependent geometry, the mesh is distorted with time.
As a consequence the governing equations need to be solved on a
curvilinear moving mesh. If this method allows actually a very accurate description of the interface its numeri-
cal handling is costly and complex. Moreover the ability to take into account topological transitions as well as
several bubbles is really limited.
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li.e. for the two different cases where the interface is considered either as a sharp discontinuity or as a volumetric transition zone. The
Gibbs’ representation of the interfaces provides the formalism allowing to switch from one representation to the other one.
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Front-tracking method In these methods the geometry of the interface is described
with the help of a Lagrangian mesh (dots on the RHS figure) superposed on a fixed Eu-

lerian grid (squares on the RHS figure), e.g. [140]. In the algorithm, the motion of the fluid 1
interface is an independent step of the calculation. This engenders major difficulties ’/.\‘\

to apply constraints to this motion that are consistent with the main physical balances /./ ‘\‘\.l—
(mass, momentum, energy), e.g. [91]. The distortion of the Lagrangian mesh due to \.\
the motion of the interfaces requires to regularly reconstruct this mesh, e.g. [126] fluid 2

. Moreover, even though the interface is represented as a sharp surface, a necessary
smearing of some source terms, like the surface tension force? , must be introduced in
order the solving of the governing equations on the Eulerian grid takes into account
the physics of the interface. This smearing is numerically controlled and its consequences on the main balances
cannot be analyzed. The topological transitions are not naturally taken into account.

Concluding remarks As a partial conclusion, the use of an explicit representation of the interface leads to nu-
merical difficulties for the treatment of the interface motion. As a consequence the accuracy of the main balances
can be difficult to handle. Moreover even though the interface is sharply represented, it is necessary to smear
its properties in order to take them into account in the physical balance equations. This smearing is numerically
constrained and its consequences on the consistency of the governing equations cannot be analyzed. As a con-
clusion the main difficulties of dealing with these methods lies in the handling of the numerical representation of
the interface. We see in the following that the difficulties are of different nature with interface capturing methods.

2.1.3 Interface capturing and diffuse interfaces

General presentation The main idea behind interface capturing methods is to use an implicit definition of a
surface to describe the interface, rather than an explicit definition. This makes easier the numerical determination
of the time dependent location of the interfaces. In this section 2.1.3, we provide a short presentation of the basic
ideas allowing such an interface description. Two main families of such methods exist namely the level-set
and diffuse interface methods. Level-set method is presented in the following. In section 2.1.4, we present the
formalism of the diffuse interface models and the relevance for their use in numerical simulation.

In the implicit description, the function F is not unique, since only its zero iso-contour is relevant, but it can
be smooth in the entire domain. If V; is the speed of displacement of the surface, the motion of the surface is
then described either by dx;/dt = V; or by 0F/0t + V; - VF = 0 where V denotes the spatial Eulerian gradient
operator. Provided that the velocity V; defined at the surface can be continuously extended in a neighborhood
around the surface 3, the latter equation is valid in the entire domain and involves only smooth functions, which
is numerically much easier to handle. Moreover, the resolution of this equation is similar to any other balance
equation, which makes its resolution easy and efficient (which is more especially interesting in view of three
space dimensions simulations and for parallel computations). To enable this efficiency, it is therefore required
to provide a well-defined smearing of the velocity of the interface. This idea is the key of interface capturing
methods as opposed to interface tracking methods. Among the interface capturing methods, the most popular
is the level-set method. The diffuse interface methods also belong to this class of interface capturing methods.
The main difference between the level-set and diffuse interface methods is that the latter is thermodynamically
consistent and is better suited for flows in which capillary phenomena cannot be neglected. F as well as the
smeared velocity field V; can be either purely numerical (level-set) or more physical (diffuse interface). The
equation of evolution for F, thus determining its Lagrangian derivative (dF/dt) and the motion of the interface,
is then different, even though the main idea remains the same. Let us also precise that since the time evolution
of the location of the interface is implicit, the topological transitions are automatically taken into account, even
though their occurrence may not always be relevant or accurate. It is worth noting that the main efforts of the
interface capturing methods (with regard to the interface tracking presented in section 2.1.2), are reported on the
definition and computational management of the smearing of the fields around the interface location.

2The surface tension is most of the time taken into account using the continuous surface force CSF method [18].

3For instance in a two-phase flow without interface mass transfer, the velocity field of the bulk phases can be used for such an
extension. Indeed, in this case, as stated by the Rankine Hugoniot jump condition corresponding to the mass balance (c¢f. the study of
the Rankine Hugoniot jump conditions in the appendix, section A.2), the bulk velocities at the interface are both equal to the interface
velocity.
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Level set methods This method is for sure the most popular of the interface capturing methods, e.g. [123]. In
these methods the necessary smooth extension of the main variables around the sharp interface is made using a
numerical distance function as the field F'. To control the smearing of this field, it is regularly re-initialized. One
of the difficulties of the level-set method is to ensure that the mass is actually conserved when the smearing of the
distance function is such re-initialized. To improve the mass conservation, the coupling of the re-initialization
with a Lagrangian displacement of particles can be used, e.g. [48]. It is worth pointing out that the use of the
so-called “ghost-fluid” method, e.g. Liu et al. [88], allows to accurately take into account the jump conditions
in the normal direction to the interface. However the accurate taking into account of the surface tension is still a
challenging problem.

2.1.4 General presentation of the diffuse interface models

Let us consider a two-phase system where the bulk phases are separated by an interface. In diffuse interface
models, the interface is considered as a continuous transition zone. The main issue is then to describe the
behavior of fluid particles that are located within the transition region. To do that, the two-phase system is first
studied thermodynamically and the corresponding equations of motion are then derived. In this chapter and in
chapter 3, we focus only on the thermodynamic modeling; the corresponding equations of motion are derived
and analytically studied in chapter 5.

In this section we present the basic formalism of the diffuse interface thermodynamic modeling and introduce
the main diffuse interface models.

Thermodynamic modeling using local dependence with regard to
the ‘“‘order parameter’” Let X be the main thermodynamic variable
that allows to distinguish the bulk phases of the system, say the local
mass density p for liquid-vapor phases of a pure substance or the local
mass fraction for two non-miscible phases (water and oil for instance). S
The values of X within the bulk phases are different (by definition) and
these values are thus characteristic of the bulk phases (for instance, p ~
P, in the vapor phase and p =~ p;* in the liquid phase for a liquid-vapor N E R I E—
system). X is therefore an intensive variable. The spatial average of the X

X field over the system volume is meaningful and defines the mean

value (X) for X. As classically done in diffuse interface modeling, the Figure 2.1: Original energy functional
variable X is called the order parameter of the phase transition, even

though the use of this concept can be viewed as abusive. Let us also consider that the entire system can be
described by a single energy functional E depending, as a first modeling step, on the local value of X, say
E = Ey(X) (for instance the Helmholtz free energy F(p) for the liquid-vapor system)*. Let us present an Ej
function allowing to describe a two-phase system. Let us denote 1 and 2 the two different phases. E is convex
around the characteristic bulk values for X, say X; and X», such as illustrated on figure 2.1. Let us remark
that, for a range of intermediate values of X where E((X) is non-convex, such as X on figure 2.1, the system
cannot exist as a homogeneous single-phase state because it is thermodynamically unstable. Therefore only a
given range of X values is locally accessible, which corresponds to the convex parts of the function Ey(X). For
instance, let us consider a system where the mean value (X) of X is such that (X) = X. This means that the mean
(X) value cannot correspond to any local X value. The system is therefore separated in domains, say the bulk
phases, where the local values of X belong to the ranges where the function E((X) is convex. The continuous
energetic description Eg(X) is therefore sufficient to model the phase separation process. Moreover between two
bulk domains, X cannot adopt the intermediate values corresponding to the non-convex part of Ey. The field
X undergoes thus a jump at the boundary between the bulk domains. The function Ey provides therefore the
description of the interface as a sharp discontinuity. As a partial conclusion, the thermodynamic modeling of a
multi-phase system based on an energy functional depending solely on the local value of the “order parameter”
allows to model the phase separation process with a sharp interface description. Since this latter characteristic is
not the one desired, let us go a step further in our thermodynamic modeling of the two-phase system considered.

<

X3

“the dependence with any other relevant thermodynamic variables is omitted for the sake of simplicity
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Thermodynamic modeling of the structure for the interface as a volumetric transition layer Across an
interface, X varies continuously on a small length scale, defining a volumetric transition zone, actually sharp
from a macroscopic point of view. The states of the particles inside this transition layer are not modeled by
Eo(X). In order to model the structure of this layer with the help of a purely conservative model (or more
generally with the conservative part of the constitutive model, i.e. without considering any dissipative effect), a
length scale is introduced in the energy functional that we have imagined to originally reduce to £ = Eo(X). The
simplest non local generalization refers to the van der Waals’ theory of capillarity [142] (1894) and reads

E(X,VX)

Let us briefly illustrate how this dependence leads to define a thickness to the interface structure. In order to be
more specific, let us consider the following expression for £

E(X,VX) = Ey(X) + e; (VX)?

where Ey(X) represents the original model and e is a positive parameter (the capillarity coefficient in the liquid-
vapor transition). The description of the homogeneous states, i.e. where VX = 0, is not concerned by the
additional non-local contribution. The single-phase model of the system is therefore unaffected by the existence
of the non local contribution. Let us study the modification of the two-phase states of the system. In order
to illustrate, we consider again the system of given X mean value (X) = X (i.e. corresponding to an unstable
homogeneous state). Let us study the state that minimizes the total energy of the system. Since E is composed
of two parts, namely the, say local, contribution E and the non-local e; (VX)?, let us begin by considering each
part separately. As already expressed, under the constraint (X) = X, the system should be made of separated
bulk phases in order to minimize Ey. The nonlocal contribution e; (VX)? introduces an energetic penalty for
the non-homogeneous states. Between the bulk phases, the field X can therefore not undergo a sharp jump that
would induce an infinite local value for the square gradient term, but rather a smooth variation. With the single
e1 (VX)?, the state minimizing the energy of the system is the homogeneous X = (X) field. The two different
states minimizing each energy contribution are thus incompatible while (X) = X. Let us consider that the non
local contribution tends to smooth the X variations between the bulks. In the region where X varies from the bulk
values X and X», X takes locally some values penalizing the E( energy part. Therefore a large spatial extent of
this transition region is energetically penalizing. The final state corresponds to an optimization of the extent of
this layer, therefore defining a thickness for the transition layer.

Thus, the dependence of the energy functional with respect to X and VX provides a model for the coexistence
of bulk phases together with a model for the structure of an interface layer. All the diffuse interface models are
based on such a thermodynamic modeling, using basically the same formalism. Let us note that the nonlocal
contribution term VX to the energy of the system can be justified by a study of the interaction particle using the
mean field theory, e.g. Rowlinson and Widom [115].

The main diffuse interface models For the liquid-vapor phase transition, the corresponding diffuse interface
model is the so-called van der Waals’ model inherited from the theory of capillarity of van der Waals [142]. In this
case, the density p is the natural “order parameter. The presentation of this model, also called second-gradient,
in the scope of our targeted numerical applications is the subject of the section 2.2. For binary mixtures, the
local mass fraction of one component of the mixture is the natural ”order parameter*. The corresponding diffuse
interface model is due to the work of Cahn and Hilliard [26, 25]. For further details, Anderson et al. [4] provide
a review of diffuse interface methods in fluid mechanics. The phase field models are diffuse interface models
where an abstract “order parameter* is used. They are widely used in materials science while studying solid-solid
or solid-liquid phase transitions. For a detailed presentation of phase field methods in materials science, we can
refer to Emmerich [47]. Phase field methods are presented and reviewed in view of our application in section 2.3.

2.1.5 Diffuse interface models versus sharp interface models

The main difference between the the sharp and diffuse interface models lies on the original (say physical) repre-
sentation of the interface. But this has not only consequences on the compared relevance of the physics modeled
but also on its computation. Let us consider the problematic for solving the temporal evolution of a multi-phase
system.
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Sharp interface methods presented in sections 2.1.2 and 2.1.3 are based on the Gibbs’ theory of interfaces.
The interfaces are thus modeled as sharp discontinuities possibly endowed with interface properties (such as
surface quantities). The Gibbs’ theory does not consider the fine structure of an interface layer as in diffuse
interface models presented hereinabove. This theory therefore provides an interesting simplification of the more
complete diffuse interface one. However, from a numerical point of view, the sharp modeling induces some
complexity in the algorithms as mentioned in section 2.1.2. The introduction of a diffuse interface layer provides
a physically inherited smearing of the interface allowing the use of more easily handleable algorithms, say a
computational simplification (c¢f. 2.1.3). Therefore two simplifications of different nature can be considered
while comparing the two models. It allows to consider the multi-phase model under the two different angles

* the physical problem of the interface layer
* the mathematical problem of dealing with free boundaries and the associated computational problem

We therefore propose to present in the following the sharp and diffuse interface models in view of these different
angles. This defines the relevance of use of these models for different applications.

Physical relevance of the description of an interface as diffuse As stated hereinabove an interface has a
characteristic physical thickness, denoted / in the following. The typical value of A far from the critical point
lies between the nanoscopic and the microscopic scale. Let us consider a physical process where other physical
length scales L are involved (typically the extent of the bulk phases). The Gibbs’ theory provides a way to avoid
the complex problem of determining the fine structure of an interface in the case where 7 < L. Therefore the
sharp interface model is relevant for the description of mesoscopic physical processes, such as the dynamics of
one or several developed inclusions whose size L satisfies # << L. This is the case while dealing with boiling
flows including several bubbles or drops, say of mesoscale in the following.

The scale separation 4 < L constitutes a limit for the physical relevance of the use of diffuse interface
models. Diffuse interface methods are required when, for example, the extent of bulk phases (either the distance
separating two interfaces or the radius of curvature of an inclusion) is locally of the order of magnitude of
the interface thickness. It is then required to determine the governing equations for the fluid particles inside
the interface layer (the diffuse interface model provides such a description of the fluid). This is the case while
dealing with coalescence (reconnection, merging . .. ), break-up (pinch-off, fragmentation . . . ), appearance (phase
separation, i.e. nucleation or spinodal decomposition) or disappearance (collapse) of one or several inclusion(s).
Conditions close to the critical point are also concerned by this relevance since the interface thickness undergoes
mesoscopic values while approaching the critical conditions, say & ~ L. Let us also mention the moving contact
line problem (triple line, contact angle, wetting . .. ) addressing the description of a fluid-fluid interface in contact
with a solid, i.e. the common boundary of three different phases (e.g. [62, 111, 112]).

We have therefore presented the physical relevance of the use of either diffuse or sharp model for an interface.
It is based on the relevance of determining the fine structure of the interface layer. While the internal dynamics
of the structure can be considered as not interacting with the rest of the physical process the simplification of the
sharp theory is justified.

Numerical relevance of diffuse interface models out of the domain of its physical relevance Let us consider
a mesoscale physical process for which the physical relevance of the description of the interface layer does not
hold i.e. L > h. As mentioned in section 2.1.3, the implicit description of the interface is numerically attractive.
Diffuse interface models enable this implicit formulation, adding the interesting property of thermodynamic
consistency for the description of the diffuse layer. However the use of the physical model of the interface layer
can be numerically irrelevant. Indeed, in numerical simulations, a third length scale exists (apart from L and 4):
the size of the mesh cells discretizing the system under study, say Dx. It is obvious that the condition Dx < L
must be satisfied. The interface layer needs to be captured by the mesh, which imposes that the condition Dx < h
must also be satisfied. The scale separation between the mesoscale of the system and the micro-scale % induces
an unreasonable (and unreachable) number of mesh cells, say L >> h = Dx << L. Indeed, let us for instance
consider the thickness for the interface takes the typical value of 10 A (Angstrdms) and a physical system of size
L = 10 um. This implies the size of the mesh cell Dx to satisfy L/Dx ~ L/h ~ 10* and for three dimensional
computations, the required number of cells is of the order of magnitude of 10'2. Therefore while the physical
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relevance of the diffuse interface models does not hold, the scale separation induces an irrelevant number of cells
in order to capture the fine interface structure. Even though the use of the natural diffuse interface model is in
this case numerically irrelevant, the use of a diffuse interface model is numerically attractive. Let us consider in
the following how it is possible to deal with a numerical diffuse interface model out of its physical relevance.

Diffuse interface models with an artificial interface thickness To use a diffuse interface, the interface thick-
ness must approach a reasonable size Dx of a mesh cell. In this case the interface thickness is no longer con-
strained by the physics but rather by the numerics. It requires to develop a model for an artificial diffuse interface;
this can be called a diffuse interface method.

Since we aim at determining a set of equations of motion fully compatible with the desired smearing, this
smearing should be based on first physical principles. The main idea is then to use the formalism developed
to describe the physical structure of the interface layer in order to develop the diffuse interface method. In this
regard, diffuse interface models appear as a particularly well-suited framework. At this point, it is clear that
the smearing of the interfaces is not physical and thus artificial but nevertheless it originates from a physically
consistent description. Two possible paths can be followed to develop a diffuse interface method:

* adaptation of an existing physical diffuse interface model, like the Cahn-Hilliard or the second-gradient
models.

* development of a diffuse interface model equivalent to the sharp interface model, like the phase field
models.

As a conclusion for mesoscopic numerical simulations it is possible to deal with diffuse interfaces whose artificial
structure is numerically tractable and obtained from a physically consistent model.

Advantage of a theoretical framework for the diffuse interface computation As mentioned in the previous
sections, most of the numerical methods dealing with free boundary problems, induce an effective and numerical
smearing of the interfaces. The lack of a theoretical framework allowing to analyze this smearing constitutes
a major difference compared to the diffuse interface methods. Indeed, the theoretical framework of the diffuse
interface models can be very helpful and inspiring to design numerical algorithms. As an example, let us mention
the issue of parasitic currents that exists in all current numerical methods dealing with capillary flows. To
illustrate this issue, let us consider the basic problem of a bubble in a closed box without any external force. At
equilibrium, the bubble should be spherical and the entire fluid should be at rest. However, the corresponding
numerical result shows the persistence of a flow made of several currents concentrated at the interface. These
are the so-called “parasitic currents”. For some physical problems, the intensity of these parasitic currents can
be larger than that of the main physical flow. In such cases, these numerical methods cannot be applied. For
instance, for the study of nucleate boiling, they can dominate the convective heat transfer process in the vicinity
of the interface and therefore lead to an unrealistic estimation of the phase transition process. Jamet et al. [68]
proposed a numerical scheme to reduce these parasitic currents to round-off using the second gradient model.
The analysis framework of this work is provided by the ability to control the energy exchanges in the entire
computational domain. Therefore, to obtain such a result, it is necessary that the interface zone is energetically
consistent. Thus, the formalism of the diffuse interface models provides an efficient analysis tool that can give
the benefit to the other methods.

Conclusions on the use of diffuse interface models for the numerical simulation As a first conclusion,
from a computational point of view, diffuse interface models provide an attractive (because continuous and
thermodynamically consistent) set of governing equations for a free boundary problem. However, the direct use
of the original diffuse interface models for mesoscopic applications is irrelevant. A well suited thermodynamic
description must be used in order the solving of the structure of the interface layer being actually relevant and
numerically tractable. This thermodynamic model is based on the formalism of the diffuse interface models but
induces an artificial interface thickness. The resulting structure of the interface layer needs then to be carefully
studied in order to control the consequences of the artificial smearing on the interface properties. However the
thermodynamic consistency of the smearing induces an interesting framework for the study of the numerical
scheme and the comparison with (and eventual improvements of) the other numerical methods based on a sharp
interface model.
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Conclusion on the numerical methods for the simulation of nucleate boiling

Different numerical methods that can be used to study the nucleate boiling flows have been presented. The main
difference between the diffuse interface methods and the other methods lies on the nature of the difficulty of
their use. The interface tracking methods have been shown to have mainly difficulties to manage the interface
displacements. The level set methods have difficulties to take into account a consistent smearing of the distance
function. In the diffuse interface methods the difficulty lies on the necessary thermodynamic description of the
interface layer. However, the gain in consistency with regard to the other method and its ability to model naturally
the topological transitions provides some supplementary advantages. For this reason, it appears as benefit to use
a numerical method based on this formalism. Its analysis should brings some interesting results for the other
numerical methods. In the following of this study of simulation of boiling flows, we therefore choose to use a
diffuse interface method. As mentioned by Sethian [123] in his review of the level set methods when presenting
the different techniques for computing problems with moving interfaces, (...) the strict delineations between
various approaches is not meant to imply that the various techniques have not influenced each other. (...) Good
numerics is ultimately getting things to work; the slavish and blind devotion to one approach above all others is
usually a sign of unfamiliarity with the range of troubles and challenges presented by real applications.
Let us review the existing diffuse interface models for the liquid-vapor flows with phase change.

2.2 The second gradient method

2.2.1 From a diffuse interface model to a numerical method

The most natural diffuse interface model dedicated to liquid-vapor flows with phase change is the second gradient
model. This model comes from the van der Waals theory of capillarity [142]. In this theory, the fluid density
p is considered as the natural “order parameter” for the liquid-vapor phase transition. The dependence of the
fluid free energy with respect to the non local field (Vp)? is justified using a mean field theory in order to
describe the particle interaction inside the interface layer, e.g. Rowlinson and Widom [115]. The capillary stress
tensor depends on both the density p and the local gradient of density Vp as shown by Korteweg [80]. This
model is currently used for the theoretical study of the liquid-vapor phase transition, e.g. [111, 127]. This
model can be used as a numerical method to simulate liquid-vapor flows with phase change, e.g. [104, 97].
However, while dealing with boiling flows far from the critical point, the direct use of this method leads to
prohibitive computational costs due to the very small interface thickness compared to the typical radius of the
bubbles. Jamet [66] proposed a modification of the thermodynamic closure relations allowing to go beyond this
numerical limitation while keeping the main features of the liquid-vapor fluid description. This modification of
the thermodynamic behavior is briefly presented in section 2.2.3. Two-dimensional computations of isothermal
two-phase flows, namely bubble coalescence and contact line motion, are provided by Jamet et al. [67] using
this modification. Fouillet [53] more particularly studied the second gradient method in the context of wall
nucleate boiling simulations (which corresponds to our own goal). This study provided qualitatively satisfactory
numerical results. But it revealed also quantitative limitations for the use of the method for high wall heat fluxes
and subsequent large superheats of the liquid bulk phase. In section 2.2.2, we recall the basic features of the
original model allowing to understand the induced numerical problems. The possible modifications considered
to get rid of some of the numerical limitations and the subsequent changes in the fluid macroscopic properties
are presented in section 2.2.3. These induced changes finally renders the method inapplicable for the targeted
applications as stated in section 2.2.3.

2.2.2 The thermodynamic model

The model is based on the van der Waals [142] theory of capillarity. The Helmholtz free energy F of the fluid is
supposed to be made of two main contributions,

F = Fo(p, T) + Feap(Vp?) (2.1)

The second term of the right hand side, F ), implies that the fluid is endowed with capillarity and provides an
internal structure to the interface that separates the bulk phases. The F; part of the energy corresponds to the
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more widely known van der Waals equation of state (EOS ,gw), P(p, T), for a pure fluid. Let us recall that P(p, T)
is defined from the Helmholtz free energy of the fluid F;(p, T) as follows
. OF Foo? 6_f
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(2.2)

where f = F/p is the specific Helmholtz free energy. For the sake of simplicity, let us consider an isothermal
system at a temperature Ty smaller than the critical temperature of the fluid. In the following, we first present the
basic features of this equation of state. Secondly we present the description of the two-phase equilibrium, and
thirdly the interface structure with the help of the van der Waals theory. Finally, we present the main reasons for
the inability of the model to be used as it is for numerical simulations of boiling flows.

Single-phase states with the van der Waals equation of state For the isothermal case, the EOS ,4w reduces
to a non-monotonic function P(p) as plotted on the figure 2.2. The function P(p) is made of two increasing parts

Pm

(a) Free energy (b) Pressure

Figure 2.2: Van der Waals’ model

describing the two possible single-phase states, liquid and vapor. The decreasing part of the EOS 4w, (i.e. the
range of density [p,, : pu] of figure 2.2(b)), is inaccessible for homogeneous single-phase states since they are
thermodynamically unstable. Let us recall that the isothermal compressibility y 7 defined as

1(0V 1 dp
2 _ (22} =222 2.3
xT V(aP)T 0 P T @.3)
must satisfy the Gibbs Duhem criterion of stability
xr =0 (2.4)

for a single-phase state to exist, e.g. Papon and Leblond [107]. Using the relation (2.2) defining the pressure
P from the Helmholtz free energy F and the definition of the compressibility coefficient y 7, the unstable states
correspond to a non-convex part of F; (see figure 2.3(a)).
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Figure 2.3: Van der Waals” model

Two-phase equilibrium At two-phase thermodynamic equilibrium across a planar interface, the bulk values of
the pressure and of the specific Gibbs free energy, g (also denoted the chemical potential y in the following) are
equal and take specific values (depending on the equilibrium temperature). For the van der Waals EOS 4w these
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equilibrium conditions are equivalent to the existence of a common tangent to the F; Helmholtz free energy at
the two representative points of the single-phase states as illustrated on figure 2.3(a). The associated equilibrium
value for the bulk pressure, namely the saturation pressure, is denoted P,,(To). At this pressure, the density of
the single-phase states are denoted p, s4:(T0) and p; 4:(T0).

In order to illustrate analytically these features, let us make explicit the expression for the Helmholtz free
energy part F(p) that is valid in vicinity of the critical point

Fe(p, To) = A(To) W(p) + tsar(To) p = Peg(To) 2.5

where 144, is the common bulk value of the chemical potential at two-phase equilibrium and W(p) is given by>

W) = (0 = Posar(To))* (0 = prsar(T0))* (2.6)

It is straightforward to show that this expression for F;(p, Tp) satisfies the relation (2.2) for p, s4:(T0) and pj sa:(T0)
for the same pressure P.4(To), usa(To) being the slope of the common tangent of F; for these two values for
the density. Therefore they correspond to the densities values at which the two-phase equilibrium condition of
common tangent is satisfied.

Metastability limit The single-phase states can only exist for a given range of pressures, bounded by the
maximum value Py, ,(To) for the vapor phase and by the minimum value Py, (To) for the liquid phase as
illustrated on figure 2.3(b). This range of pressures defined here for T, actually depends on the temperature. For
a given pressure, a corresponding range of possible temperatures for the single-phase states can be defined by
bijection. Figure 2.4 provides an illustrative representation of the domain of existence of the bulk phases on a
(P, T) plane.
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Figure 2.4: Stability domains

The bound of each bulk domain (Py;,,) is called the limit of metastability and the corresponding curve on a
(P, p) plane obtained by varying the temperature is called the spinodal curve. In nucleate pool boiling flows, as it
has been shown in chapter 1, the liquid near the wall is locally super-heated (T > T,(Po) where Py is a pressure
reference). When the fluid (initially liquid) locally reaches the limit of superheat the only possible state (at these
conditions of pressure and temperature) is then the vapor. This leads to a bubble nucleation, e.g. [28]. As a
consequence it is important for the two-phase flow model to control the value of this limit of superheat in order
to envisage its use for quantitative numerical simulations of nucleate boiling. More particularly, if the limit of
superheat of the model is too low with regard to its physical value, bubbles will naturally but undesirably nucleate
in the near wall region where the liquid is the most super-heated.

It is important to note that, as shown hereinabove, the super-heat limit is closely related to the shape of the
function F (o) between the saturation densities. Indeed p,, and p,, are the characteristic densities at which F;
shifts from concave to convex and therefore at which the bulk phases shift from stable to unstable.

Interface structure and capillarity The modeling of the internal structure of the interface layer is made pos-
sible by considering the dependence of the Helmholtz free energy F with respect to the non local contribution

The figure 2.3(a) is indeed obtained with such an analytic expression.
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(Vp)z, Feqp. A classical model for F,, is a linear dependence in (V,o)2 as

A
Feap = 5 (V) (2.7)

where A is the capillary coefficient and is considered as constant in the remainder of this presentation. Such
a fluid is said to be endowed with internal capillarity. The non local dependence introduces a specific internal
length scale in the thermodynamic model related to the thickness £ of the interface layer at equilibrium. Besides,
an excess free energy is associated to this transition layer which is interpreted as the surface tension o, e.g.
Rowlinson and Widom [115]. For the definition of the excess quantities, let us refer to our presentation in
appendix A.1. The physical parameter o must be accurately modeled since it plays a major role in the boiling
phenomenon.

It is worth noting that the range of values [p,, : py] is now accessible for non-homogeneous states of the
fluid, i.e. across the interface. Let us precise that both the surface tension and the interface thickness are defined
through two features of the free energy F: its dependence with respect to (Vp)? and its dependence with respect
to p between p, s4/(To) and p; 4:(To). This last dependence includes the range [p,, : pam] where F; is concave.

Analytical example From the given simple analytical expressions for F; (2.5) and F,, (2.7), we propose to
derive some illustrative examples of the previous statements. The generalized chemical potential p,4w is defined
as

_OF
Hoaw = = (2.8)
op

where & denotes the standard variational derivative

0 0 0
f:f_v'(av...) 2.9)

It can be shown that at two-phase equilibrium, the chemical potential u,sw is uniform (c¢f. the study of the
equilibrium relations in section 3.2.2). For the given expression of F' (2.1), it reads

oF,
Huaw = — L_V.(vp) (2.10)
o0

Using the particular polynomial expression for F; (2.5) yields

pv,sat(TO) + pl,sat(TO)
2

In the bulk phases, pygw = tsqr- Therefore, the uniformity of the chemical potential implies that, for the specific
analytical expression of F' proposed, the density field p satisfies the following differential equation

MHodWw = Msar t 2A(TO) (p - pv,sat(TO)) (p - pl,sat(TO)) (,0 - ) -V. (/le) (2-1 1)

Posat(To) + pisa(To)
2A(To) (p = posarlT0)) (0 = prsa(To) (p -V V) =0 (2.12)
For a planar interface normal to an arbitrary x-axis, the p profile has the analytical expression
pL+py  PI=Po pi=py |24
= - h — 2.1
p(x) > > tan [ 5 1 x] (2.13)
where we have arbitrarily set the center of the profile in x = 0 and the liquid, resp. vapor, phases at x = —oo,
resp. x = +oo. This profile has a characteristic thickness /4 that can be defined as
~ Pl =P
a7 2.14
max |dp/dx| ( )

From the p profile (2.13), one gets

PR (2.15)
Pl — Po 2A

It can be shown (c¢f. appendix A.1) that the excess Helmholtz free energy induced by the equilibrium profile
p(x) (2.13) provides the following value for the surface tension coeflicient o
(pl - pu)3
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The number of parameters entering the expression for F in order to recover the main physical properties
required for the model of the liquid-vapor isothermal flow It has been shown with the help of a particular
expression for F that the main features of the isothermal liquid-vapor equilibrium can be modeled with a set of 6
main parameters, namely

* the bulk density values p; . and py g4
* the two parameters A and A defining o and &
* the two equilibrium values for the chemical potential and pressure, P, and p

The compressibility coefficient of the bulk phases and their metastability limit are then consequences of these
choices. Let us remark that with these 6 parameters these relations are quite simple and easy to handle ©.

The original model as a numerical method As stated in the introduction of diffuse interface models (see
section 2.1.4), the use of diffuse interface models can be considered either as physically relevant or numerically
relevant. The van der Waals model allows to deal with liquid-vapor flows with phase change. Let us define
its domain of physical relevance and how it is related to our targeted applications of numerical simulations of
nucleate boiling flows. As stated in the section 2.1.4, the physical relevance is ensured by a common length scale
for both the bulk phases extension and the interface thickness. Let us mention some examples of application of
the second gradient method for numerical simulation of two-phase flows. The work of Onuki [104] provides an
example of use of the second gradient model for the numerical simulation of thermo-capillary flows near critical
conditions in a zero gravity environment. Nadiga and Zaleski [97] studied the instability of a liquid jet at high
Reynolds number and the spinodal decomposition with the help of an isothermal second gradient model.

The case of nucleate boiling flow It has been shown in chapter 1 that the study of interest in this work is the
numerical simulation of a bubble growth in high heat fluxes NB regime conditions. The typical length scale for
the simulation targeted is therefore of the order of a bubble diameter, i.e. of 1mm. This bubble diameter has to
be compared with the interface thickness 4. The typical value of & far from the critical point (our own range
of application for the boiling study) is of the order of magnitude of a few molecular layers, say a few tens of
Angstr(ims. The criterion of the physical relevance of the model is not satisfied. Let us state quantitatively that
the numerical use of the model is however out of reach. The necessity of solving the internal structure of the
interface layer induces small mesh cells in the transition zone where about 5 discretization elements in the normal
direction to the interface are required. The scale separation between the domain size and the necessary cell size
is huge (of the order of 107 that has to be accounted for in the three directions). Even with the help of numerical
methods for local and necessarily dynamic (since we are dealing with a free boundary problem) mesh refinement
in these inhomogeneous zones, it induces a prohibitive number of cells (on the order of 1029). For these reasons,
the direct use of the van der Waals model as a numerical tool for boiling flows is out of reach. This justifies to
consider the original van der Waals model as the basis of a more useful and artificial model that could be used
for the numerical simulations of nucleate boiling flows. The presentation of the subsequent modified model is
provided in the next section.

2.2.3 Modifications and associated limitation of use

The basic idea of the modification We present the numerically motivated modifications of the van der Waals
model. The modified model is based on the physical original model and keeps its essential features including
the mathematical structure described in the previous section. In order to overcome the limitations of use of the
original model, Jamet et al. [68] proposed to artificially increase the interface thickness. Since this length scale
is defined with the help of both the concave part of F with respect to p and its dependence with regard to (Vp)?,
the increase is made possible by modifying the thermodynamic description of the fluid. Let us illustrate this
modification with the help of the analytical expression proposed for F; (2.5), and F,p (2.7). The interface
thickness / is a function of the bulk density and of the two parameters A and A. Let us recall that the expression

SEven though the number of controlled parameters entering the expression of F, is increased, it can be shown that we indeed recover
the same basic features presented hereinabove as well as the same limitations when dealing with a modification of the original model as
presented in section 2.2.3.
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for the surface tension coeflicient o implies same parameters. The surface tension and the bulk densities are
essential properties of the fluid description that must be kept unchanged while enlarging artificially the interface.
Therefore, in order to modify A, the ratio of the two parameters A and A must be modified while their product
must be kept unchanged.

— 4 ’ Ao . . —_ 4 Amod — Amod — 2 &
h() - Pl—Pv 2A() modification hﬂwd P1=Pv 2Amnd Kh() = Amad K AO
g0 _ N2Acd Tmod . — N2Amod Amod _ __ 0 Amod _ _Ag
(o1 —Pu)3 6 (o1 _Pu)3 6 (o1 _Pv)3 Ao Amod (2 17)
Amoa = K A
hmod =K hO =
_ -1
Amod =K AO

More generally, in order to keep the physical value of o, while enlarging the interface, we get a two equations
(the artificial 4 and the physical o to be fixed) and two-unknowns (the two different parts F; and F,, of F)
problem to solve. For the analytical example provided hereinabove, these two unknowns are more precisely the
parameters A and A. This renders the thermodynamic modification doable. Such a modification is illustrated
by (2.17) in the case of the simple six parameters van der Waals model presented in the previous section. We
introduced a proportionality coefficient K for the ratio of the original interface thickness kg with the artificial
thickness £,,,4. We’d like the model to induce, K = h,,,4/ho > 1. Simple calculations of (2.17) show how to
get the value h,,,4 for the interface thickness while keeping the values of the bulk densities p; and p, and of the
surface tension coefficient o unchanged: the capillary coefficient must be multiplied by the factor K whereas
the coefficient A must be divided by the same factor K, other parameters (namely p; sz, Pu,sar» Peg> Msar) €ntering
the expression for F; remaining unchanged. In [66], Jamet studied the consequences of such an increase of
h on the dynamics of the internal structure of an interface during a liquid-vapor phase-change process. This
study showed that the modification of the thermodynamic had a limited influence on this process. However it is
worth emphasizing that, for the method to be numerically tractable for nucleate boiling simulations, the interface
thickness must be increased by a huge factor, typically of the order of K = 103. This implies that the order of
magnitude of the modification of the parameters, say the ratio A,,,q/A, is of 107>. The analytical formulation is
not unique and classes of functions other than the one presented can be used. Nevertheless, it turns out that one
always deals with equivalent problematic.

Limitation of the modifications of the thermodynamic model

A modified limit of metastability The modification of F; necessary to artificially increase 4 must at least
be effective on a part of the range [p,.sar : P1.5ar]- As a consequence of the increase of 4 of a factor K =~ 10, it
has been shown that it is required the parameter A to decrease of a factor K~! ~ 107>, From the expression (2.5)
for F; it implies the ratio of the non-linear contribution W(p) with regard to the linear contribution u .0 to
be decreased by the same factor K~!. It therefore implies a flattening (tends to a quasi-linear function) of the
variations of the function F(p) between the bulk densities p, s, and p; 5. As a consequence, the curve P(p)
is also flattened as represented by the curve “P(p) modified” on figure 2.5. This flattening has direct visible
consequences on the single-phase description since it induces a higher compressibility of the fluid. In order to

Py ——
P(p) modified
P(p) partially flattened ==m===

Figure 2.5: Modified van der Waals model

keep the compressibility equal to its physical value within the bulk phases, it is possible to modify the EOS only
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on areduced range of p values (as for example the “partially flattened” function P(p) on figure 2.5). Nevertheless,
the modification always affects the concave part of F;. Therefore, the limits of metastability of the bulk phases,
namely the values of Py, (To) and of Py, (To), are also affected, and it can be shown that we have [Py, —
Poglmod = K YPym — P.4lo. As a partial conclusion the limit of metastability at constant temperature T is
reduced by a factor K~! ~ 107>,

Keeping unchanged the limit of superheat around a pressure value Let us consider the implication of
these modifications of the limit of metastability on the limit of superheat. Indeed, an essential property of the
nucleation process has been said to be the limit of superheat of the liquid. For the sake of simplicity, we here
do not provide the fully explicit study of the limit of superheat as a function of the modifications envisaged but
rather provide only the most important steps of the reasoning. The detailed study of the limit of superheat for the
modified van der Waals model can be found in [53].

It can be shown that, when the isothermal variations of the Helmholtz free energy are given, the limit of
superheat at a given pressure T is defined by two functions of the temperature namely the saturation curve
P.4(T) and the variations of the density with respect to temperature characterized by the coeflicient of thermal
expansion ap of the single-phases defined as

ap 1(av) =—1(a—p) (2.18)
P P

1>

v\er p\oT

If ap and P(T) are not modified, it turns out that if the limit of metastability is reduced by a factor K 1, the limit
of superheat at a given pressure is reduced by the same factor K~!. This decrease of the limit of superheat for the
study of nucleate boiling flows is not desirable since it leads to undesirable nucleation events in the super-heated
near wall region.

In order to overcome these difficulties, Fouillet [53] proposed to modify the coefficient of thermal expansion
ap to recover a correct scaling of the limit of superheat at a given reference pressure, say Py. As a consequence
for boiling systems whose pressure is always near Py the limit of superheat is controlled. However let us note
that the limit of superheat is very sensitive with respect to the the variations of pressure.

For nucleate pool boiling flows, the range of pressure variations around a mean reference pressure, say Py is
in fact dictated by an “external” scale: the hydrostatic pressure. As a consequence, even though the correct limit
of superheat is recovered at the pressure Py, the limit of superheat cannot be controlled for the whole range of
pressures values of the boiling system. As a partial conclusion, the previous modification of the van der Waals
model does not allow to control the limit of superheat and as a consequence quantitative numerical simulations
of nucleate boiling flows cannot be performed with the help of this model.

We do not provide the complete set of possible modifications allowing to go further beyond some limitations
which can be found in [53]. It is important to understand that whatever the way of changing / while keeping o,
it modifies the single-phase description by changing at least one of its “classical” properties, namely the density
variations with (P, T'), and/or the limit of stability.

7

Concluding remark on the attempt to modify the van der Waals model As a conclusion, there is no way
to modify easily the thermodynamic description of the fluid F(p, T, (Vp)?) in order to deal with an artificially
enlarged interface layer while keeping unchanged the main fluid properties involved in the boiling heat transfer
process, i.e. p, o, £ and the limit of superheat. Therefore, the second gradient formulation does not allow to deal
with numerical simulation of nucleate boiling flows with a diffuse interface model which is our actual goal.

2.2.4 The need for another thermodynamic model

The limitations of use of the second gradient method while dealing with boiling flows far from the critical
point are induced by the necessary modifications of the thermodynamic description of the fluid. It turns out

"It is worth noting that the modification of the saturation curve P,,(T) is not possible since its slope indeed defines the latent heat of
evaporation L that must be kept unchanged for the study of boiling flows, cf. the Clapeyron relation
P L

dT T (1/p,— 1/p,)

This relation is studied in more details in the presentation of our model in section 3.4.
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that the modifications necessary to enlarge the interface transition layer inevitably affect the single-phase state
properties. Therefore the limitations are mainly attributed to the way the transition layer is modeled, namely
through the use of the density dependence of the Helmholtz free energy. The fluid description appears to be
too much constrained: the interface model and the bulk phase model are too closely related through the density
dependence. This suggests to develop a diffuse interface model with more degrees of freedom. Since it has
been shown to be impossible using the classical thermodynamic variables, say density p and temperature 7', the
introduction of an additional variable might help to solve the problem. This idea constitutes the starting direction
of research of the present work. Among the diffuse interface models, the widely used phase field methods are
based on the use of a purely abstract variable mainly devoted to the description of the interface layer and the local
distinction of the phases. The formalism is closely related to our own problem. The following section is devoted
to the presentation and review of the phase field methods.

2.3 Phase field models

In phase field models, the single-phase states of a material are associated to given and constant values of an addi-
tional and abstract thermodynamic variable, namely the phase field, denoted ¢ in the following. In section 2.3.1,
after having presented the basic idea of the phase field models, we provide an illustrative example of the phase
field thermodynamic description. In section 2.3.2, we then precise explicitly the desired features for a diffuse
interface model dedicated to the numerical simulation of nucleate boiling. This allows us to review the existing
phase field formulations in view of our problematic in section 2.3.3 and to conclude on the necessity to develop
a specific formulation in section 2.3.4.

2.3.1 General presentation

The role of the phase field variable The phase field diffuse interface model is widely inspired by the van
der Waals’ theory of capillarity and indeed uses basically the same formalism. The phase field plays the role
of the order parameter of the phase transition described (as the density does in the van der Waals model). This
variable is devoted to the description of the interface layer. To model the structure of the interface layer, an
additional nonlocal contribution to the thermodynamic potentials is introduced, most often through a dependence
with respect to V. The physical relevance of the introduction of the phase field variable for the purpose of
describing the phase transition, instead of more classical physical parameters, is not always provided nor justified
as mentioned by Boettinger et al. [17]. In some cases, this introduction is clearly motivated by numerical reasons
and the phase field method is presented as a computational technique. As a conclusion, the introduction of the
phase field variable in the thermodynamic model is unnecessary a priori for the description of the phase transition
but useful for its use as a numerical method. We propose in the following to illustrate the subsequent advantages
of this introduction. Let us refer to our presentation of the diffuse interface models in section 2.1.4 and recall
that the goal of the artificial diffuse interface models is to provide a thermodynamically consistent smearing of
the fields across the interface layer.

The phase field model Whatever the purpose for which ¢ is introduced, the numerical advantages resulting
from the diffuse interface formulation, constitute an essential part of the current success of these methods. In the
present section we focus only on the thermodynamic modeling the phase field models (our study of the dynamics
governing equations is the subject of chapter 5). The goal is to illustrate how the introduction of a phase field
thermodynamic variable provides additional degrees of freedom for the thermodynamic description of multi-
phase systems.®. For this purpose, and since phase field models are most often devoted to the phase transition in
materials science, let us consider the thermodynamic description of a solid-solid phase transition. We study in
the following how we can deduce the widely used phase field formulation from a more primitive thermodynamic
model of the phase transition using only classical thermodynamic variables. Let us precise that the corresponding
primitive modeling of the solid-solid transition is not classical even though it is based on very general features of
the thermodynamic modeling of multi-phase material.

8 A more detailed study of the phase field formalism and of the consequences of the introduction of ¢ in the thermodynamic description
is provided while deriving the proposed model in the section 3.2
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A primitive modeling of the solid-solid phase transition Let us denote e¢.; and s the specific energy and
entropy of the material. The two single-phase states are denoted 1 and 2. In order to justify the main features of
the two-phase model presented, let us refer to the van der Waals’ model previously presented in section 2.2.2 and
establish the following analogy
P o T
o © s (2.19)
Xr < cp
Let us suppose that a continuous variation of the energy e with respect to s is meaningful. As illustrated on

figure 2.6, the equation of state 7'(s) describing the two-phase material is composed of two parts describing the
single-phase states 1 and 2 and a third one referring to unstable homogeneous states. The EOS of the single
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Figure 2.6: Natural EOS s(T) shape for a solid-solid two-phase material

phase state 1, resp. 2, say T(s), resp. T»(s), corresponds thus to the function 7'(s) for s € [—oo : s,], resp.
s € [sy : +oo]. Let us recall that the third part, say T, corresponding to s € [s,, : sj] concerns states that
can only exist in an interface layer (instable as homogeneous). Let us denote T, the temperature at which the
two-phase equilibrium is possible, the two-phases being separated by a planar interface. At planar two-phase
equilibrium the temperature in the bulk phases equals 7', and the specific entropy jumps from sy ., t0 5 .4 across
the interface, i.e. Toy = T1(851,eq) = T2(52,¢)-

As a partial conclusion, we have introduced a model for the two-phase material by considering an equation
of state 7T'(s) and therefore only classical thermodynamic variables.

A diffuse interface model using only classical variables Using a similar formalism than for the van der
Waals model, it is possible to consider a diffuse interface modeling of this two-phase material by introducing an
additional dependence of the energy

e = eq(s) + s (Vs)*

This additional energy contribution, namely a capillary contribution, “provides” the structure of the interface
layer. In this case the function T,(s) is meaningful since it actually describes states inside the interface layer.
However, if such a choice is made, as stated by Jamet [65], limitations appear due to the modification of the
model while attempting to increase the interface thickness for numerical applications. The problem is similar to
the one described for the second gradient model in section 2.2.3.

As a partial conclusion, the model using classical thermodynamic variables cannot be used with an artificial
thickness.

Introduction of the phase field for the diffuse interface modeling In the phase field formulation, the de-
pendence of the energy with respect to ¢ and the norm of its spatial gradient (V¢)? is introduced®, therefore
e(s, ¢, (V)?). The values ¢; and ¢, are arbitrarily associated with the corresponding single-phase states. As a
consequence the value ¢; corresponds to the EOS T(s) and the value ¢, corresponds to the EOS T»(s). Two
“classical” contributions, a double well function W(y) and a capillary coefficient A allow to define the equilibrium
structure of the interface layer, i.e. the associated thickness of the layer and the free excess energy (leading to the

°For the sake of simplicity, we do not consider any anisotropic dependence of the energy.
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Figure 2.8: Single phase EOS with the phase field formulation

macroscopic surface tension). The form generally considered in the phase field models reads

A
e(s, ¢, (Vo)*) = W(p) + > (Vo) + &(s, p)

where é(s, ¢) will be related to the EOS T and T in the following. Let us recall that a similar capillary coefficient
was considered in the non local contribution to the Helmholtz free energy F,, in the van der Waals model (cf.
section 2.2.2). The double well function W has to be related to the isothermal expression for the Helmholtz free
energy F. These energy contributions, namely the double well function and the capillary contribution, provide
the structure of the interface layer. It is worth noting that it can be shown that the structure of the interface layer
is not affected by the function é(s, ¢) (cf. the derivation of our thermodynamic model in chapter 3).

As a partial conclusion we have introduced two parameters, namely W and A that are function of the single
phase field variable and that define the structure of the interface layer independently of the function é(s, ¢).

Equation of state In the present phase field formulation, the energy contribution & remains to be specified. Let
us consider the EOS of the material described by the phase field formulation defined as

- Oe oe

T(s,@) = - =0
9s1¢.(Ve)?  Osip
Let us note that the EOS T is a function of two variables s and ¢ instead of only s for the EOS T(s) of the
primitive model. This additional property, characteristic of the phase field models, provides the most important
advantage of the thermodynamic description of a multi-phase system.

In order the material described by the single phase states of the

phase field model ¢ = ¢ and ¢ = ¢, to correspond to the single phase
states 1 and 2 of the primitive model it is required that

T(s,¢1) T:(s)
T(s,02) = Ta(s)

v(p)

The single equation of state 7'(s) for the material is split into the two
single-phase equations of state T(¢;, s) and T(¢;, s) with the help of
the additional dimension ¢. This is represented on figure 2.8.

The function 7'(s, ¢) needs then to be determined for any ¢ values
different from ¢; and ¢,. In order to match the correct single-phase
ones, the equation of states reads

Figure 2.7: Interpolation function

T(s,@) = T(s,901) + (T(s,¢2) = T(s, 0))V(¢) (2.20)

where v(¢p) is an interpolation function taking the values O for ¢ and 1 for ¢, as represented on figure 2.7. The
resulting EOS T'(s, ¢) is illustrated on figure 2.9(b).

However, let us note that the introduction of the phase field in the thermodynamic description of the material
and the corresponding choice of the interpolation function v(¢) has consequences on the thermodynamic behavior
of the material. The detailed study of the consequences of the introduction of ¢ is the subject of more formal
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(a) (b)
Figure 2.9: The phase field T'(s, ) EOS

developments in the section 3.2. In order to be more specific, let us just precise that in order that the EOS of the
single phase states actually reduce to the EOS T(s) and T3(s), some analytical properties of the interpolation
function v(¢) are required, the one being then determined as the most convenient numerically.

As a partial conclusion the function é(s, ¢) can be chosen such that the correct single phase EOS are recovered
for the single-phase states 1 and 2.

Remarks on the modeling of the unstable homogeneous states Let us precise that, with such a diffuse inter-
face model, the planar two-phase equilibrium is characterized by

* a monotonic ¢ profile linking ¢; and ¢, of finite thickness and a subsequent excess free energy, both
resulting from the choice of W(y) and 4

* a constant and uniform temperature 7' = T,

The variation of entropy across a planar interface at equilibrium (i.e. at uniform temperature 7',) is formally
described by the function T, = T(s, ) which links the specific entropies of the single-phase states s(¢1, Teq) =
51,eq and s(¢2, Teq) = $2.4. This is represented by the transverse curve in the (s, ¢) plane of equation T = T, on
figure 2.9(a). Let us note that as a consequence the primitive unstable part of 7',(s) is not entering the phase field
formulation.

Main properties of the phase field formulation The whole function e(s, ¢, (Vg)?) is determined using the
basic ingredients W(y), v(¢) and 4. W and A manage the interface structure while the EOS is defined indepen-
dently through the function v(¢), including the description of the bulk phases 1 and 2. It is worth noting that
the description of the single-phase state on each side of the interface is independent from the description of the
interface layer. This represents an effective new degree of freedom and an advantage from the computational
point of view: the interface layer can be modeled (more specifically the choice for the artificial thickness and the
control of the surface tension coefficient) according to numerical constraints without modifying the EOS .

Phase field model for the liquid-vapor transition Let us apply the previous analysis of the phase field for-
mulation to the liquid-vapor transition (of interest in this work). Let us recall the analogy 2.19 existing between
the solid-solid transition described hereinabove and the isothermal van der Waals’ model. For the isothermal
liquid-vapor phase transition, a phase field ¢ can thus be introduced easily by analogy. For a non-isothermal
thermodynamic description of the liquid-vapor transition, the basic ideas are the same.

As a partial conclusion it is a priori possible to use the same phase field formalism for the liquid-vapor phase
transition as in the previous example for a solid-solid. As a consequence, it appears as doable using the phase
field formalism to actually describe the structure of the interface layer independently from the bulk £OS .

Concluding remark The possibility to decouple the description of the single-phase from that of the interface
layer constitutes the degree of freedom lacking while attempting to modify the van der Waals equation of state.
A phase field description appears therefore as a good candidate in order to model the liquid-vapor transition for
nucleate boiling simulations.
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The analysis presented previously did not take special caution of the consequences of the introduction of ¢
in the thermodynamic model. This more complete study involves more complex and formal developments. The
chapter 3 provides a more rigorous study of the derivation of the phase field models.

Several phase field models can describe the liquid-vapor phase transition, they are presented in section 2.3.3.
However the specific application we aspire, namely nucleate wall boiling simulations, requires some specific
constraints to be satisfied. They are presented in the next section.

2.3.2 Constraints on the diffuse interface model for the nucleate boiling simulation

The numerical advantage of dealing with a single system of governing equations for the liquid-vapor flow with
phase change has a cost: it requires to capture the internal structure of the interface layer. The goal of the ther-
modynamic coherent description of the interface is not to deal with a more accurate description of the physical
processes occurring inside this transition layer but rather to provide a coherent smearing of the equations corre-
sponding to the classical sharp interface model, made of the Navier-Stokes equations in the bulk phases and of
the Rankine-Hugoniot jump conditions. Therefore, it is required to show that the diffuse interface model pro-
vides an equivalent formulation of the two-phase flow. The model must be sufficiently generic in order to be able
to deal with various assumptions concerning the thermodynamic description of the bulk phases, e.g. thermody-
namic stability, compressibility. Moreover, the use of this diffuse interface model should not lead to additional
difficulties and requires to be easily implemented and handled numerically. Let us present the main features of
the diffuse interface model allowing to fulfill these requirements.

The smearing of the sharp formulation must result in controlled smooth profiles across the interface. It must
be possible to define a typical thickness of the artificial transition layer compatible with an acceptable spatial
discretization of the mesoscopic problem under study. The model of the interface layer should be independent
of the description of the bulk phases and should be based on a simple set of parameters allowing to reproduce its
macroscopic characteristic (e.g. surface tension ...). The model must provide the ability to include various bulk
EOS. Moreover, in nucleate boiling the liquid phase undergoes local superheat and special attention must be paid
on the limit of metastability induced by the formulation (since it has been shown to be a major difficulty with the
second gradient method). The different constraints can be summarized as follows:

1. monotonic ¢ profile through an interface at equilibrium (numerical constraint)
2. monotonic density profile through an interface at equilibrium (numerical constraint)
3. easy parametric choice for the interface layer thickness (numerical constraint)

4. easy parametric choice for the excess free energy of an interface at equilibrium (physical con-
straint)

5. recovery of classical pressure jump conditions (physical constraint)

(a) Laplace relation

(b) recoil pressure

6. parametric control of the {P, T} domains of stability and metastability of the bulk phases (phys-
ical constraint)

7. control of the equations of state of the bulk phases ( p(P,T) and s(P, T)) (physical constraint),
for example

(a) compressible bulk phases

(b) incompressible bulk phases

This set of properties concerns a priori all the set of governing equations including the model of the dissipative
process and a fortiori some statics features defined by the thermodynamic model. These statics features (equi-
librium states) are the subject of chapter 3. The study of the dynamics is then provided in chapter 5. Following
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these constraints we search for an optimal phase field model.

Diffuse interface models versus these constraints It has been shown that the second gradient method does
not fulfill all the hereinabove constraints. Let us consider the classical phase field models for solidification. A
similar list of design constraints has been used by Wang et al. [146] for the derivation of phase field models for
the crystallization of a pure material from its melt. In [146] the constraint concerning the arbitrary choice of
the interface thickness is however not considered even though, to our point of view, it is clearly one of the most
important motivation to deal with such a diffuse description of the interface layer. Naturally the constraints more
specifically related to the liquid-vapor phase transition are not considered. It is worth noting that none of the
current phase field models applicable to the liquid-vapor phase transition matches all these constraints; this will
be discussed in more details in section 2.3.3. This shows the necessity to develop a specific phase field model
devoted to its use as a numerical method for the simulation of the liquid-vapor flows with phase change. Our
main goal is to take the desired properties as constraints for the derivation of a phase field model. We believe that
this modeling approach is not restricted to liquid-vapor phase transitions but can actually be applied to any other
multi-phase system.

Remarks on the single-phase equations of state The last constraint (item 7) of the above list actually requires
that the EOS of the bulk phases can be chosen arbitrarily, which is an important degree of freedom of the final
model, especially for our application. This choice concerns the modeling of the compressibility of the fluid bulk
phases. The compressible nature of the fluid (as described by the van der Waals model) induces a constraint
on the maximal value for the numerical time step which induces an important computational cost'?. Nucleate
boiling flow characteristics are mostly determined by latent heat, capillarity and buoyancy as shown in chapter 1.
Therefore, single-phase compressibility does not appear as a dominant factor of the boiling process. Most of
the sharp interface methods devoted to the simulation of nucleate boiling deal with incompressible single-phase
states, e.g. [69], which appears as a reasonable first order approximation of the boiling process. The possibility
to model the liquid and vapor phases as incompressible in a diffuse interface model is therefore relevant (and
moreover computationally interesting). The final formulation should therefore provide the possibility to deal with
compressible and incompressible bulk phases. A detailed study of the single-phase equations of state compatible
with a multi-phase thermodynamic description is provided in section 3.1.1.

2.3.3 Review of the phase field models dedicated to phase transitions with density difference

On the one hand, the phase field models devoted to the numerical simulations of two-phase flows (e.g. [8, 35,
51, 52, 63, 77, 112, 153]) most of the time do not consider phase change or non-isothermal effects. On the
other hand, the phase field models devoted to phase transitions most of the time do not consider any flow or,
if any, no density difference between the bulk phases is accounted for. The phase field models dedicated to the
study of solidification are widely used. Only a few consider flow in the liquid phase, and even less consider a
density difference. Let us consider the latter category of models. Even though these models are not dedicated
to the liquid-vapor phase transition, the models actually allow to describe this transition, if one considers a large
density difference and a finite viscosity in the bulk phase. Among the large number of phase field models, our
review focuses on the few non-isothermal models of a pure material undergoing phase transition with flow and
density difference. We only present the thermodynamic formulation proposed in view of the constraints expressed
on page 53. The methods reviewed have been derived for specific applications and very few correspond to ours.
Nevertheless, we analyze their possible adequateness to the study of nucleate boiling.

A phase field model dedicated to liquid-vapor flows with phase change

Caro [29] studied mathematically and numerically the system of governing equations of a diffuse interface model
dedicated to the liquid-vapor transition. The phase transition is described with the help of a thermodynamic phase
field variable ¢. In this model, ¢ is introduced as an abstract order parameter supposed to be equal to O in the

100 et us note that, since, for the second gradient model, the density is considered as the order parameter of the transition, this compress-
ibility is intrinsic to the model. The ability to model thermodynamically a two-phase system with density between two incompressible
single-phase states will be studied in more details in section 3.1.1
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liquid phase and 1 in the vapor phase at two-phase equilibrium. This model is therefore very closely related to
ours. The proposed expression for the internal energy (o ) in the non-isothermal case reads

2
E
pu= (puap Uvap — Plig uliq) @ + Plig Uiig + W(p) + ? (V‘P)z (2.21)

where the density p is given by

P = Plig + (puap - pliq) ¥ (2.22)
The double well function W and the capillarity coefficient A are introduced similarly to what has been presented
in section 2.3.1. Using this model with W = 0 and ¢ = 0, numerical simulations of the nucleation process are
provided but let us specify that, due to the nullity of both W and & no capillary flow is taken into account.

The model provides an interesting modification of the original second gradient model using the introduction
of the abstract parameter ¢. In the formulation (2.21), the EOS of the single-phase states, u,,, and u;;, appear
as explicitly linked through a linear dependence with respect to ¢. This characteristic actually corresponds
to the advantageous property of the phase field models presented in section 2.3.1. At planar equilibrium, the
interface thickness and the surface tension coefficient can be chosen independently of the density difference
which correspond to some required properties of the desired model. As a modification of the second gradient
model, the proposed phase field formulation deals with an intrinsically compressible fluid. This property does
not match the last constraint expressed in the list of section 2.3.2 and more particularly does not bring the ability
of the model to deal with incompressible single-phase states.

The interpolation function chosen in this formulation is a linear dependence of both p u and p with respect to
. This choice has consequences on the thermodynamic behavior of the fluid out of the two-phase equilibrium
conditions of a planar interface. First, the values of ¢, 0 and 1, inside the bulk phases are only ensured at these
equilibrium conditions. It is shown in section 3.2.3 that this property of the phase field model is actually induced
by the choice of the interpolation function. Therefore, the EOS of the bulk phases are different from u,,, or u;,
and thus controlled with difficulty. Moreover, it is shown in chapter 6 that such a linear dependence does not
provide any control of the thermodynamic stability domains of the bulk phases, which thus appear to be highly
dependent on the choices made for the interface thickness. This reduces therefore the range of application of the
model for quantitative numerical simulations of the nucleate boiling process.

As a conclusion, the phase field model proposed provides an interesting framework for dealing with liquid-
vapor flows with phase change. However, the consequences of the introduction of the phase field variable on the
fluid thermodynamic behavior need to be more deeply controlled such that the required properties expressed in
section 2.3.2 (page 53) are satisfied. This is the subject of study of the model derivation in chapter 3.

A diffuse interface model dedicated to solid-liquid phase-change with flow, quasi-compressible formulation

Phase field models have been proposed to take into account the convective effects on the solid/liquid phase
transition, e.g. [11, 17] or [98, 133] for monotectic alloys. These models are based on the introduction of both
an external flow and a viscosity depending on ¢ but do not consider any density difference. Anderson et al. [5, 6]
have proposed a phase field model with convection that ““ incorporates in a thermodynamically consistent way
the density effect in a phase field description of solidification as well as the appropriate form of the Korteweg
stress term in the momentum equation”. The corresponding specific Gibbs free energy reads

T
g(T,P,o, (Vo)) = [eo—cp Ty — (@)L — wnu(@)] (1 - _)

Ty
T P-P 2
—epTIn =— + w(y) + 04 2 (vp) (2.23)
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where () is a monotonic interpolation function that defines also the function p(y), L is the specific latent heat,
cp is the specific heat capacity at constant pressure common to the two-phases, T, is the melting temperature at
the pressure P = Py, and w,,(¢) is a double well function. At equilibrium of a planar interface along an arbitrary
x-axis and at a given equilibrium temperature 7', the differential equation governing the profile ¢(x) reads
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where -, denotes the spatial derivative with respect to x and the subscripts g, resp. p, refer to the solid, resp.
liquid, bulk phases. The pressure profile, determining the surface tension coefficient as shown in 3.2.4, satisfies

2

P=Py-— % o (2.25)

the value of the bulk pressure P, satisfying the following Clapeyron relation

(Po - Px) (i - i) = L(l - l) (2.26)
pPs  PL Ty

Let us comment the above relations in view of our applications.

Single-phase description Let us note that the pressure P is chosen as the main thermodynamic variable and
that the density of the material is the subsequent p(¢) function defined as

=%

lps 25 (2.27)

As a consequence of the linear dependence of the specific Gibbs free energy with respect to P, the density is a
function of ¢ and actually reads

p(p) = prL + (ps — pL) v(p) (2.28)

Let us note that the single phases are incompressible, since the density p does not depend on the pressure. This
property refers to the hypothesis of quasi-compressible liquid as introduced by Lowengrub and Truskinovsky
[89], which is presented in the study of the multi-phase thermodynamic description in section 3.1. No extension
of the formulation to compressible EOS is proposed.

The interpolation function v is considered as being polynomials of degree 1 or 3. The choice of a polynomial
of degree 1 implies similar consequences on the thermodynamic behavior of the fluid as presented hereinabove
for the model of Caro [29]. We show in our study of the phase field interpolation functions in section 3.4.1
that the polynomial of degree 3 ensures the bulk phases to correspond to the fixed values of ¢ 0 and 1 even out
of the two-phase equilibrium conditions 7 = Ty and P = Py. However, it is also shown in chapter 6 that the
thermodynamic stability of the single-phase states is governed by the choices made for the interface thickness
at T = Ty. As a consequence, the single-phase states can only be stable for a given range of pressure and
temperature values, the extent of this range being a decreasing function of the interface thickness'!. This limit
of metastability constitutes a limitation in the use of the model since it is controlled by the a priori arbitrarily
chosen & value'?.

Interface description Let us consider the planar equilibrium equation (2.24) for the phase field profile ¢(x).
In [6], two different expressions for w,, are prescribed, one allowing to consider the interface equilibrium profile
as being independent of the density ratio between the phases at T = T, and thus only parameterized by the
function w,, and the capillary coefficient £. This property is interesting since as a consequence the artificial
thickness can be easily controlled (which corresponds actually to the point 3 of our own constraints).

Let us now consider the equilibrium equation (2.24) for an equilibrium temperature different from the refer-
ence temperature T # Ty It is straightforward that in this case the second line of equation (2.24) is non-zero.
As a consequence, the thickness of the interface layer at a equilibrium temperature 7', T # Ty, deviates from the
one obtained with an equilibrium at T = T,. Since not physically motivated, this variation of the equilibrium
profile is not desirable.

'This induces a metastability limit that does not correspond to the classical one presented with the second gradient model in section 2.2
(i.e. associated to the Gibbs-Duhem criterion on compressibility (2.4)). This characteristic of phase field formulation is studied in more
details in chapter 6

12We provide in the section 6 a study of the thermodynamic stability of the single-phase states with the phase field models and present
the common way to model a controlled limit of metastability (even infinite).
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Concluding remarks This model shows an interesting way to take into account the density difference in a
phase field model of a pure material with incompressible bulk phases. The classical Clapeyron relation, an
important characteristic of the liquid-vapor phase transition, is recovered. Moreover, the interface thickness can
be chosen independently of the density ratio for 7 = T;. However some important features of the liquid-vapor
phase transition are not considered, such as the possible compressible nature of the fluid or the difference of the
cp between the bulk phases. The control of the interface thickness dependence with temperature as well as the
control of the metastability of the bulk phases are not ensured (points 3 and 6 of the constraints expressed on
page 53). This constitutes an intrinsic limitation of use of the model for our own applications. As a conclusion,
although the proposed model takes into account phase change with flow and density ratio between the phases, it
cannot be used as an efficient method for the numerical study of the liquid-vapor flows with phase change in our
boiling conditions. However this model already presents the main features of a phase field formulation devoted
to liquid-vapor phase change. Our model constitutes a modification and extension of this formulation.

Pressure effect on the crystal growth, a compressible phase field model for liquid/solid phase transition

As mentioned by Conti [39], the phenomenology of the solidification process is not only governed by the super-
cooling imposed but also by density changes and associated pressure levels variations induced by the local con-
traction of the material. In order to model the phase transition including these effects, Conti [38] proposed a
phase field model. The Helmholtz free energy density reads

82 82
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where the function W, , reads

Woe = a (9 +b (o= ps)?) (¢ = 1) + blp - p1)?) (2.30)

This formulation both includes a van der Waals type EOS in order to include compressible effects (let us refer
to the analytical expression for the Helmholtz free energy F.; presented in 2.2.2) and the classical features of
the typical phase field formulations for solidification (as presented in 2.3.1). The expression for the Helmholtz
free energy (2.29) yields to the following differential equation for the ¢ profile at equilibrium along an arbitrary

X-axis p 5
2 Woe 4 T — Tsu(P)
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and to the following expression for the non-dissipative part of the stress tensor T components (i, k)
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Ti = Sik|~P +pepVop + — (Vp)* + — (Vo) | = e5p.ip s — 01k (2.32)

where ; indicates spatial derivative with respect to the coordinate x; and Jj is the Kronecker symbol.

This model does not provide sufficiently generic formulation for the EOS in view of our application since
it cannot reduce to a quasi-compressible formulation. The dependence of the formulation with respect to two
non-local fields (Vp)? and (V¢)? induces complexity in the resulting expression of the governing equations (cf
the expression of the non-dissipative stress tensor (2.32)). In order to model capillarity, a single dependence has
been shown to be sufficient. A more adequate way to model the fact that both p and ¢ undergo strong variations
across the interface should be, as made in the Caro [29] and the Anderson et al. [5] models to more deeply enslave
both variations through an explicit dependence of the density with respect to the phase field .

As a conclusion, this model implies a useless complexity for our targeted applications and moreover cannot
reduce to the description of incompressible bulk phases. It will be therefore disregarded in the following of this
work.

2.3.4 Conclusion : the need for a new phase field formulation

The main properties of the phase field thermodynamic description have been presented. Specific properties of a
phase field model dedicated to the simulation of nucleate boiling have been presented. A review of the existing



58 CHAPTER 2. SOLVING THE NUCLEATE BOILING FLOWS, A REVIEW

diffuse interface models has revealed that their properties do not match the ones required. The existing diffuse
interface models do not provide for the moment a sufficiently efficient numerical method for dealing with boiling
flows. In view of this previous study, the need for a new model has therefore been stated. The phase field
formulation has shown to provide the most flexible way to describe the phase transition in the scope of numerical
use. This solution is therefore retained in the remainder of the study. The required properties presented on
page 53 are used as constraints while designing the present model.
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2.4 Conclusion on the review of numerical methods for the simulation of nucle-
ate boiling

In chapter 1, we have defined the study of a bubble growth in nucleate pool boiling configuration as a target
problem of primary interest for the understanding of the mechanism of the boiling crisis. The use of numerical
simulations to study this problem has been proposed. In this chapter we have thus studied the different existing
numerical methods for the simulation of liquid-vapor flows with phase change. Two different families of numer-
ical method have been considered according to two different ways to represent the liquid-vapor interface: either
the interface is tracked and needs to be explicitly located, or the interface is captured (see section 2.1.1).

In section 2.1.2, we have first considered the methods using an explicit tracking of the interface. In sec-
tion 2.1.3 we have then considered the main families of interface capturing methods and presented the level-set
method. All these methods lie on a sharp model for the interface. This is the most relevant model from a physical
point of view. However it yields some mathematical and/or numerical difficulties to ensure both an easy handling
of the solving of the equations and a displacement of the interface consistent with the conservation principle of
the main physical quantities.

The thermodynamic formalism of diffuse interface models allows to deal with a smeared interface layer and
a local consistency of the governing equations: it guarantees local positive entropy production. It has been shown
that these properties of the model are quite attractive, since there is no need of additional numerical recipes to
constrain the structure of the interface layer: its smearing is naturally and physically controlled. However, the
diffuse interface models are classically devoted to the fine description of the interface layer, which is not our
actual goal. As a consequence, we have considered an alternative way to smear the interface: the smearing of the
interface is inherited from a thermodynamic modeling but the typical thickness of the interface layer is artificial
and can be chosen as numerically convenient. Therefore the formalism of diffuse interface model is used to
provide a consistent regularization of an initially sharp interface model. Two ways have been defined in order
to build such a model: either a classical model for the liquid-vapor phase transition (such that the van der Waals
model) is modified in order to induce an enlargement of the interface thickness, or an artificial diffuse interface
model is built from the primitive sharp interface formulation, the smearing of the interface being governed by the
introduction of an additional abstract thermodynamic variable, the so-called phase field formulation.

In section 2.2 we have studied the ability to modify the van der Waals model. We have first recall the
main features of the isothermal van der Waals model in section 2.2.2 and shown how the formulation lies on
a number of 6 parameters allowing to model the physical mechanisms we’d like to take into account, namely
density difference, capillarity, smearing of the interface layer. However the physical small value of the interface
thickness far from the critical point has been shown to lead to an impossible use of the model for the study of
nucleate pool boiling flows. In section 2.2.3 we have studied how these parameters can be modified to artificially
enlarge the thickness of the interface layer while keeping unchanged the other parameters. It has been shown that
this modification inevitably affect the limit of metastability. In the non-isothermal case, the limit of super-heat
is as a consequence modified. It has been said that this modification is not desirable for the targeted numerical
simulation of nucleate boiling flows because it induces artificial nucleation events in a near wall region that would
impede a correct simulation of a single bubble growth. As a consequence, the attempt to modify a classical
diffuse interface model has been shown to be unfruitful and we turned our attention toward the second possible
way defined: the phase field formulation.

To introduce the phase field formulation, we have first provided in section 2.3.1 an illustrative example to
show how the description of the interface layer, if thermodynamically consistent, is actually de-coupled from the
thermodynamic description of the bulk phases. This property adds therefore an additional degree of freedom in
the thermodynamic model of the interface layer that was lacking with the van der Waals model.

We have specified in section 2.3.2 the main desired features of the diffuse interface model in view of its use
for the targeted study of nucleate boiling flows. These features have been summarized on the form of a constraints
list, of page 53, that can be used to attest the validity of the phase field model.

Based on this framework for the analysis of the phase field model we have reviewed in section 2.3.3 the
previously existing phase field model allowing to model a liquid-vapor phase transition. None of these models
matches all the desired features for our study of the nucleate boiling flows. As a consequence, a new phase field
model for the study of the liquid-vapor flows with phase change needs to be derived. This derivation is the subject
of the following chapters.
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Chapter 3

Phase field model: thermodynamic derivation

As stated in chapter 2, existing diffuse interface models are not well suited for the numerical simulation of
nucleate wall boiling. It is necessary to develop phase field models for the study of this problem. In the present
chapter, we derive the thermodynamic part of the proposed model and study its main features. The goal is to
study

* the introduction of a phase field in the thermodynamic description of the fluid, its interpretation and the
consequences on the equilibrium states

* the derivation of a generic phase field thermodynamic model
* the subsequent main properties of the bulk phases and of the interface layer

In fact we are looking for an optimal phase field model with minimal interference between the description of the
bulk phases and the one of the interface layer. This chapter is organized as follows.

In section 3.1, we study the thermodynamic modeling of a multi-phase fluid. We study the compatibility of
compressible or incompressible bulk £OS with a multi-phase model. The choice of the main thermodynamic
variables is shown to be related with this problematic of compatibility and the classical van der Waals model does
not bear the ability to deal with incompressible bulk phases. It is shown that this limitation is removed while
using an additional “order parameter” such as the phase field variable using the quasi compressible hypothesis.
This study introduces and justifies the choice of the main thermodynamic variables used in the model presented

In section 3.2, we study the introduction of the phase field as a main thermodynamic variable. The goal is
to express the required properties of the model (cf. the list on page 53) as analytical conditions for the thermo-
dynamic model. We first specify the meaning of the phase field variable and the goal of its introduction. We
then study the conditions of thermodynamic stability of the corresponding phase field multi-phase system (see
section 3.2.2). From this study, we derive analytical relations that must be satisfied by the phase field thermo-
dynamic model in order to fulfill the equilibrium requirements expressed on page 53 of section 2.3.2. These
conditions concern the ability of the model to actually control both the single-phase states EOS and the structure
of the interface.

In section 3.3, we introduce the analytical expression for the phase field thermodynamic model proposed
and compare it with the models presented in chapter 2. We first consider an isothermal case and introduce the
phase field functions of our model. We then study the non-isothermal case. This model is then compared to the
classical phase field models, including the widely used models for the solid-liquid phase transition that consider
the density as being uniform.

In section 3.4, we show that the model proposed has actually all the required properties. More particularly, we
show that the single phase states of the model are actually described by classical EOS and that the main classical
thermodynamic relations of the description of the liquid-vapor phase transition are thus recovered. Then we show
that the structure of the interface is actually easily controlled.

I'This point has already been introduced in section 2.3.1 and is studied in more details in section 3.1.
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3.1 Thermodynamic modeling of multi-phase systems

In this section, we study the possibility to construct explicit equations of state for the model of a multi-phase
system and their compatibility with different classes of bulk EOS (i.e. compressible, incompressible). The
goal is to present the choice of the main thermodynamic variable for our model. Therefore we focus more
specifically on the thermodynamic description of phases with different densities and on the ability to deal with
either compressible or incompressible bulk phases. Indeed, as expressed in section 2.3.2, we need to recover for
each single-phase state described with the phase field formulation some classical equations of state and moreover
to get a degree of freedom for their choice (point 7 of the list of constraints defined on page 53).

3.1.1 Single-phase state and equation of state

The single-phase EOS are the basic thermodynamic relations describing the behavior of the bulk phases. Let us
study their main characteristics in the compressible and incompressible isothermal cases.

Thermodynamic potentials and main variable Let us denote G, (respectively F), and g, (respectively f) the
volumetric and specific Gibbs (respectively Helmholtz) free energies of the fluid described. The corresponding
main variable for the Gibbs, resp. Helmholtz, energies is the pressure P, resp. the density p. Both descriptions
F(p) and G(P), are equivalent and well defined if and only if the relation linking P to p is a bijection. If it is
the case, the switch from one description (e.g. F(p)) to the other (e.g. G(P)) through the associated Legendre
transformation is mathematically well-posed and one gets

F=pf=G—P=p(g—§) (3.1)
In the following, we show that if p is chosen as the main variable, the single-phase are characterized by the EOS
F(p) which defines P(p); if P is chosen as the main variable, the single-phase are characterized by the EOS G(P)
which defines p(P)

Let us start with the case where the density p is the main variable. Let us recall (c¢f. equation (2.2)) that the
pressure is defined from the Helmholtz free energy by

P=p _p=p (3.2)

The relation (3.2) is illustrated on figure 3.1(a). The equilibrium pressure Py at a fluid density p = po, is
the opposite of the ordinate at origin of the local tangent to the curve F(p). This description of the fluid is
well defined as long as the fluid isothermal compressibility yr (defined by equation (2.3)) is non zero. The
van der Waals’ model is, for example, based on this type of fluid representation.

F g \ 0

0 PO P PO P
(a) F(p) diagram (b) g(P) diagram
Figure 3.1: Main thermodynamic potentials for an isothermal fluid

Let us now consider the case where the pressure P is chosen as the main variable. The corresponding
thermodynamic potential is the Gibbs free energy G which variation with respect to the pressure is linked to
the isothermal compressibility of the fluid through

oG
op = 1+Gxr (3.3)
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which can be expressed in terms of specific Gibbs free energy as

99

3P (3.4)

u(P) = l(P) =
o
where v denotes the specific volume of the fluid. The relation (3.4) is illustrated on figure 3.1(b).

The main thermodynamic relations for the isothermal description of a fluid have been introduced. According
to the choice for the main variable (p or P), two descriptions of a fluid bulk phase are possible. Let us consider
two cases where one of them (i.e. p or P as being the main variable) degenerates i.e. when the equivalence
between the choice of the density p or the pressure P is not satisfied:

* the van der Waals model,

* the incompressible case.

Van der Waals’ model In the van der Waals’ model, presented in section 2.2, the function P(p) is obviously
multi-valued, since for instance two different densities p; 44 and p, 54; corresponds to the same equilibrium pres-
sure Py (cf. the figure 2.2(b) in section 2.2.2). The Gibbs free energy is therefore also not single-valued as

P
(a) (b)
Figure 3.2: Specific Gibbs free energy for the van der Waals’model

eq P

illustrated on figure 3.2. The pressure P cannot be chosen as the main thermodynamic variable describing the
fluid.

Figure 3.3: Compressible and incompressible phases on a Clapeyron diagram

The incompressible limit Let us consider the incompressible limit which we have shown in section 2.3.2 to
be of interest for the model and numerical simulation of boiling flows. On the Clapeyron diagram plotted on
figure 3.3, a compressible vapor phase and an incompressible liquid one (y7 = 0) are represented.

For an incompressible phase (say liquid on figure 3.3) the isothermal EOS reads

p(P) =pL
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and the pressure is obviously the main variable. Let us study the expression for the Gibbs free energy (i.e. the
thermodynamic potential corresponding to the main variable P). We get from the relation (3.3)

G(P)=P- Py
where Py is a reference pressure (constant of integration), or equivalently using the relation (3.4)

P-P
g(P) = 0

The Gibbs free energy G is therefore well-defined even if y7 = 0. However, the description using the density p
as the main variable is degenerate: it is impossible to define the Helmholtz free energy F (or the pressure P) as a
function of the density p. F is undefined out of the line p = p; .

As already said in chapter 2 (point 7b of the list of constraints page 53), and according to our study of the main
physical mechanisms of nucleate boiling flows in chapter 1, the possibility to describe incompressible fluids with
the phase field model is targeted. In this case, the main variable is therefore the pressure and the thermodynamic
description in terms of density is degenerate.

General cases More generally, the ability to get an explicit analytic expression for F or G lies on the property
of bijectivity of the function linking p and P (in other words, it lies on the well-posedness of the Legendre
transformation). We can consider three main different cases

1. p(P) is injective but not surjective: g is well-defined and the pressure P is the main variable (incompressible
case for example)

2. p(P)is surjective but not injective: f is well-defined and the density p is the main variable (van der Waals’ model

for example)

3. p(P) is bijective: f and g are both well-defined (ideal gas EOS for example)

Concluding remarks The main thermodynamic potentials have been introduced as well as the choice of the
main variables with regard to the properties of the EOS of the bulk phases. The Gibbs G, resp. Helmholtz F,
free energies describe classically the isothermal single-phase states of a fluid in the case where the pressure P,
resp. the density p, is chosen as the main variable. For the modeling of a multi-phase system, a choice for the
main thermodynamic variable must be done. As shown in the following section, this choice has consequences on
the degree of freedom for the choice of the corresponding single-phase EOS .

3.1.2 Multi-phase system and equations of state: Density difference and incompressibility of the
bulk phases

The goal of this section is to study the choice of the main thermodynamic variables for the model of a two-phase
fluid whose phases have different densities but can either be incompressible or compressible.

Introduction to the problematic In this section, we study the thermodynamic modeling of a multi-phase
system with a diffuse interface model. We show that the use of classical thermodynamic variables (e.g. p or P)
for the multi-phase model leads to some restrictions on the choice of the bulk £OS . This characteristic is specific
of the diffuse interface model for which the modeling of both the bulk phases and of the interface lies on a single,
explicit, and continuous expression for the thermodynamic potential. In sharp interface models, this expression
is not required and the bulk EOS can be chosen arbitrarily and independently of the interface properties. This
difference between the two modelings can induce limitations in the use of the diffuse interface models dealing
with classical thermodynamic variables (as it is the case with the van der Waals’ model). However, we show in
the following that, while dealing with a phase field formulation, this limitation is removed.

The section is organized as follows. We study the modeling of the liquid-vapor phase transition in both the
isothermal and the non-isothermal cases. It is shown the incompatibility of the incompressible bulk EOS with

%Let us note that even though the pressure can no longer be defined classically from the Helmholtz free energy, it can be related to the
non-dissipative stress tensor as it is shown in section 5.2.



3.1. THERMODYNAMIC MODELING OF MULTI-PHASE SYSTEMS 65

the classical diffuse isothermal interface modeling. Then we study the multi-phase model of a phase transition
using other main variables than the single density or the single pressure. We first consider the classical non-
isothermal van der Waals model in order to introduce the main features of the non-isothermal description of the
liquid-vapor two-phase fluid. We show then the possibility to model a non-isothermal two-phase system with
density difference and incompressibility of the bulk phases as soon as the specific entropy s instead of the density
p is considered as the order parameter of the phase transition. It leads us to introduce the quasi-compressible
limit.

Incompatibility between the diffuse interface model and some bulk EOS : the illustrative example of bulk
incompressibility In order to exemplify the problematic, we consider a liquid-vapor transition and study the
impossibility of dealing with incompressible bulk phases together with an isothermal diffuse interface model. In
this case, and since the system is isothermal, only either the pressure P or the density p can be considered as the
main thermodynamic variable.

Let us consider the classical van der Waals’ model. The isothermal van der Waals’ equation of state EOS 4w,
presented in section 2.2.2, models a liquid-vapor system with a single function P(p) which is injective but not
surjective (cf. figure 2.2). As shown in the previous section, F' can be expressed explicitly while G, like p(P),
can only be given implicitly since it is multi-valued. Since the density p is the main variable, it is not possible to
degenerate it in order to get incompressible single-phase states.

Let us now consider another model of the liquid-vapor transition choosing the pressure P as the main variable.
In order to consider incompressible single-phase states and a possible two-phase equilibrium, it is possible to
define a specific Gibbs free energy function g(P) as represented in figure 3.4. Each linear branch corresponds
to a single-phase state. The specific volume (v = 1/p), defined by the Gibbs free energy first derivative (cf.
relation (3.4)), is not continuous at the pressure P,,: the phases have therefore different densities p; and p,. The
two-phase equilibrium, characterized by the equality of the specific Gibbs free energy of each single-phase state
(cf. the presentation of the van der Waals model in section 2.2.2), is only possible at the equilibrium pressure
P,4. The main features of the sharp description of the liquid-vapor transition are thus recovered. However, it
is not possible to define a thermodynamic description of the fluid for values of the density p between its bulk
values py and p,. For this reason, a diffuse interface model based on such a formulation is not possible since no
thermodynamic main variable is aimed to get continuous variations across the interface.

p P
Figure 3.4: Incompressible liquid-vapor isothermal model

As a conclusion, the following set of constraints are incompatible all together

* incompressible single-phase states

* diffuse interface model of the liquid-vapor phase transition

* classical and isothermal thermodynamic description, i.e. p or P as the single main variable.

It is shown in the following how this incompatibility can be removed by modifying the last statement, e.g. by
considering a non-isothermal description and therefore by considering an additional thermodynamic variable
(namely the temperature T or the specific entropy s).

Non isothermal liquid-vapor phase transition: entropy difference and arbitrary heat capacity Let us
consider now the non-isothermal van der Waals’ model and choose the temperature 7' (instead of the specific
entropy s) as the second (in addition to the density p) main variable. The planar two-phase equilibrium is
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characterized by an additional relation 7', (P, ) linking equilibrium values of the pressure and of the temperature.
Let us introduce the specific entropy s of the fluid defined as

10F

-—— 3.9
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For the liquid-vapor phase transition considered, there exists a characteristic entropy difference at two-phase
equilibrium between the bulk phases. A subsequent latent heat £ of evaporation defined as

L= Teq (Sv,sat - sl,sat) 3.6)

is associated to the phase transformation and it is important that the model recovers this feature (¢f. our study
of nucleate boiling flows in chapter 1). Let us study how this characteristic is modeled using the F(p,T) ex-
pression. A priori, the entropy difference can be analytically enslaved to the density difference, since, using its
definition (3.5), one can express the entropy as s(p, T'). Let us provide a basic expression for F allowing to model
the latent heat. By integration of the equation (3.5), the volumetric Helmholtz free energy can be written as

T
F(p,T):F(p,TO)—f p s(p,u) du

Ty

where T is an arbitrary reference temperature. Thus using a Taylor expansion of F around T = T
F(p,T) = F(p,To) = p s(p, To) (T = To) + O(T ~ Tp)’ 3.7

For a given equilibrium temperature, say 7, the specific entropy difference L/T} is related to the function s(p, T')
through the above relations

Sl sat = S(pl,sat, To) & Sv,sat = s(pv,sats Ty)

Therefore the specific entropy difference is formally related to the density difference. The linear dependence
of the Helmholtz free energy with respect to temperature , i.e. the neglect of the terms of order O (T — Tp)? in
the expression (3.7), is sufficient to model the desired entropy difference. Next (i.e. second) order temperature
dependence of F is related to the heat capacity c, defined as

=T (ﬁ)
ar),
and once the latent heat £ has been modeled by the linear dependency, ¢, can be modeled independently using
the quadratic dependency. Therefore it is possible to deal with an arbitrary (non negative, according to the
Gibbs-Duhem criterion of thermodynamic stability) heat capacity c, for the single-phase states.
We have presented the non-isothermal van der Waals’ description of the liquid-vapor transition. It has been
shown that the model describe well the specific entropy s difference between the bulk phases, independently of

the choice for the specific heat capacity. In the following, we use the analogy (2.19) presented in section 2.3.1 in
order to introduce a model for the liquid-vapor phase transition with incompressible bulk phases.

A diffuse interface model for the liquid-vapor transition with possible incompressible bulk phases Let
us remark that since the specific entropy has characteristic values in the bulk phases, it can be considered as a
relevant “order parameter” for the non-isothermal liquid-vapor phase transition. In order to model this transition,
we therefore have the choice between two main variables the density p or the specific entropy s. This constitutes
the main idea of the following development.

Let us recall the analogy (2.19) presented in section 2.3.1:

P - T
p <8 (3.8)
XT < cp
or Xy o G
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Let us apply again this analogy? to the non-isothermal van der Waals model presented hereinabove: the entropy
is considered as the order parameter of the phase transition, the pressure is chosen as the second main variable
and the corresponding thermodynamic potential is chosen as the specific enthalpy A(s, P). The density p is then

defined as
1, oh

P B a_Pls

and is therefore a function p(s, P). It is possible to consider a density difference between the bulk phases
Pl sat = P(Sl,saz, Py & Pu,sat = p(su,sat’ Po)

such that the specific enthalpy 4 reads

(P - Py)
p(s, Po)

This models ensures therefore a density difference between the vapor and liquid phases and the terms of higher
order in pressure define the adiabatic compressibility coefficient

h(s, P) = h(s, Py) — +O(P - Py)?

Lo
p8P|s

1>

Xs

which is related to the isothermal compressibility y 7 (cf. its definition (2.3)) and the thermal expansion ap (cf.

its definition (2.18)) coeflicients by
oT

P a_Pls

As a consequence, the density difference can be considered while dealing with an arbitrary y. Since y; can
be chosen arbitrarily, it can be chosen such that y7 = 0, which implies the bulk phases to be incompressible.
Let us precise that the fluid described has all the features of a non-isothermal liquid-vapor system (i.e. density
difference, specific entropy difference, saturation curve i.e. the relation between the pressure and the temperature
at two-phase equilibrium. .. ).

The desired, i.e. incompressible, bulk EOS are thus compatible with a description of the liquid-vapor transi-
tion while another thermodynamic main variable is chosen as the “order parameter” (the specific entropy s in the
hereinabove case) instead of the more “natural” one, the density. This description of a multi-phase system with
density difference but incompressible single-phase states is known as the quasi-compressible limit which is more
generally presented in the following.

Xs =XT — @

The quasi-compressible limit In order to model the density variations of a fluid without taking into account
the acoustic waves (i.e. the isothermal compressibility) a quasi compressibility (or quasi incompressibility, de-
pending on the authors and on the context) assumption can be made. This assumption consists in considering the
density as independent on the local pressure but still dependent on the other thermodynamic variable (such as the
specific entropy in the hereinabove presented case).

In single-phase systems, this approximation of the compressible equations is valid at low Mach* number.
The local value of the density variations is for instance defined from a classical perfect gas EOS considering the
local value of the temperature field but a mean value of the pressure field, e.g. Paillere et al. [105].

In the diffuse interface models of a multi-phase system, the quasi-incompressible limit has been introduced
by Lowengrub and Truskinovsky [89] for the study of binary fluids. In this case, the local mass fraction ¢ of one
component of the mixture is the natural “order parameter” and the main thermodynamic variable are chosen as
(¢, T, P). The density p is considered as a function p(c, T) instead of p(c, T, P).

More generally for the modeling of multi-phase materials, as soon as a second thermodynamic variable (like
c or ) is introduced that could “play the role” of an “order parameter”, the quasi-incompressible limit can be

3Using this analogy the isothermal van der Waals model based on F(p) is equivalent to the incompressible model based on an energy
e(s) presented in the introduction of the phase field models in section 2.3.1. For instance, an analogue incompatibility exists with the
e(s) model: since s is the main variable of this thermodynamic model, it is not possible to deal with single-phase states with a zero heat
capacity.

“the Mach number is the ratio of the flow velocity over the local speed of sound, itself directly related to the isothermal compressibility
of the fluid
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introduced. We have presented in our review of the exiting phase field models in section 2.3.3 how it has been
used by Anderson et al. [5] for the study of the solidification process with a phase field formulation. In this case
the main variables are chosen as (¢, T, P) and the density p is considered as a function p(¢) (the hypothesis of
a null coefficient of thermal expansion being additionally considered). Therefore in our phase field model for
the liquid-vapor phase transition, a similar hypothesis is made possible by choosing the main thermodynamic
variables as being (¢, P, s) or (¢, P, T).

We have presented the quasi-(in)compressible assumption in different fields of application. This assumption
allows to filter out the acoustic waves of a physical process while considering the density as varying. This is
made possible by considering the pressure as the main thermodynamic variable instead of the density (which can
then be considered as independent on the pressure).

Conclusion on the model of a two-“incompressible”’-phase fluid with density difference We have shown
that this model is not possible as soon as the choice of the density as the “order parameter” of the phase transition
is made. We have then introduced using analogy the model of the non-isothermal liquid-vapor phase transition
where the specific entropy is the “order parameter” and that can deal with incompressible single phase. We
have presented the more generic hypothesis of quasi-compressible fluid which concerns the model of fluid with
non-uniform density but zero compressibility. Since it has been shown in chapter 1 that compressibility is not
a primary physical mechanism of the nucleate boiling flows and since moreover a gain in numerical handling
exists while dealing with incompressible fluids, the phase field model derived must be able to deal with quasi-
compressibility.

3.1.3 The main variables of the phase field model

Let us consider now the model we derive for the study of the liquid-vapor phase transition with the help of the
phase field method and define its main thermodynamic variables. The first main variable considered is the phase
field ¢.

Compressibility Let us consider the choice between either P or p as one of the main variable. We have shown
in the previous sections that both are possible if we wish model a density difference between the bulk phases and
that the choice is dictated by the desired model for the compressibility of the bulk phases. The “or” is therefore
not a fortiori inclusive. Since the general formulation depending of ¢ must reduce to the single-phase EOS to be
modeled, we must be able to write both (liquid and vapor EOS) in terms of the same variables. The following
table presents the type of general EOS (f or g or b for both or @ for none) we can model with the phase field
description of a liquid-vapor system.

liquid vapor p(P) not injective | p(P) not surjective | p(P) bijective
o(P) not injective f(o, @) (0] fp,9)
p(P) not surjective o g(P, ¢) g(P,p)
p(P) bijective fo, ) g(P,¢) b

This table seems a bit naive but actually shows that it is possible to construct a quasi-compressible formulation,
or to introduce the same kind of metastability limit than in the van der Waals’ model for both phases (P(p)
injective but not surjective). However it also shows that we cannot model one incompressible phase and a second
“van der Waals” type phase with a single phase field model. If the quasi-compressible limit of the formulation
is targeted, the density p cannot be considered as a main thermodynamic variable, the pressure P is considered
as being the corresponding main variable. This choice is therefore made in the remainder of this study and
especially in the analytical and numerical studies presented in the chapters 5 and 8.

Non-isothermal description In order to deal with more classical description of the liquid-vapor transition,
we consider the temperature 7' as the second main thermodynamic variable instead of its conjugate variable s.
Moreover, for numerical application the choice of a main variable that is uniform at thermodynamic equilibrium,
(like the temperature 7 in our phase field model according to the equilibrium relation (3.28a) shown in the
following of this chapter), is accurate. Let us recall that for a phase transition, the entropy is multi-valued (cf.
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the latent heat £) at the equilibrium temperature. Therefore, classically, the function s(7") cannot be analytically

explicitly expressed. This should justify the choice of s as the main thermodynamic variable (like it should lead

to the same statement concerning the density p). However, the introduction of the phase field variable allows to

undergo this limitation in the model of multi-phase system as stated hereinabove and the variable T is preferred.
The thermodynamic potential corresponding to the variables (P, T') is therefore the Gibbs free energy.

Non-local dependence For isotropic reason, the non local energetic contribution must not depend on the system
of coordinates, and the energy of the fluid is supposed to be a function of the norm> of V. For our present study
of the thermodynamic model devoted to the liquid-vapor transition, and as it is classically done in phase field
models, the non local field considered is the norm associated to the Cartesian scalar product of Ve, (Vo) =
Vo - V.

Specific Gibbs free energy Let us consider the primary thermodynamic potential as being the specific Gibbs
free energy ¢ (gp, PT, (V(p)z) as a function of the set of main variables: the pressure P, the temperature 7', the

phase field ¢, and (V)?. The partial derivatives of g with respect to these variables are defined as follows

. 99

u= 9 (3.9a)
. dg

v 2 o (3.9b)
N dg

s = (3.9¢)

oL 99 . (3.9d)

0 (Vo)

where v is the specific volume (v = 1/p where p is the density), s the specific entropy. We assume , as it is done
classically in the capillary theory, that g is linear with respect to (V). Thus

d%g
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and @ is therefore a function of (P, T, ¢). The specific internal energy u(p, s, ¢, (V<p)2) is then obtained by the
following double Legendre transformation (while it is valid)

u=g+Ts—Po (3.11)
Let us also define the per unit volume internal energy U by
U =pu (3.12)
The other classical thermodynamic potential are then similarly defined from the Gibbs free energy.
Conclusion on the main variables for our phase field model of the liquid-vapor phase transition The

main thermodynamic variables and the associated definitions of the thermodynamic main functions have been
introduced as being (P, T, (V¢)?) in accordance to the desired EOS for the bulk phases.

5This is not the most general case, and interface tension anisotropy is often considered in the solid-solid phase transitions and modeled
by introducing a direction dependent non local contribution to the energy. The most general case of an energy dependence with respect
to a gradient term is considered while deriving the dynamics using an Hamiltonian principle in section 5.1. It is also worth noting that
another category of non-local thermodynamic constitutive forms can be considered in diffuse interface models, e.g. [10, 23, 34, 36] where
instead of the dependence with respect to |V¢|? of the thermodynamic potential, the non-locality is taken into account as

f J(x—y) (p(x) - ¢(y))* dy
]R3

where J is a smooth function.
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3.2 Introduction of a phase field thermodynamic variable

The goal of this section is to study the thermodynamic description of a fluid with a phase field model in order to
introduce the way the requirements presented on page 53 can actually be satisfied. In other words, we express
the constraints in the form of analytical conditions applying to the thermodynamic potential g.

This section is organized as follows. In section 3.2.1 we introduce our definition of the phase field variable
and specify its role. In section 3.2.2 we study the general formulation for the thermodynamic stability of the
equilibrium states described with the help of our phase field formulation (Gibbs-Duhem criteria). In section 3.2.3
we use the previously derived relations to study the homogeneous equilibrium states. We deduce therefore the
relations that the specific Gibbs free energy must satisfy in order the phase field single-phase states EOS to
be actually controlled (point 7 of the list of constraints). In section 3.2.4 we study the structure of the diffuse
interface at planar equilibrium with the help of our phase field model. In order to control the thickness of the
interface and the surface tension coefficient, it is proposed that the equilibrium relations derived in section 3.2.2
reduce to a set of two simple ODEs that should be valid at any two-phase planar equilibrium conditions, i.e.
along the saturation curve P, (T).

3.2.1 A color function

The difficulty encountered with the numerical use of the van der Waals” model is mainly due to the inability to
modify the characteristics of the transition layer without modifying other bulk physical properties as presented
in section 2.2. The main idea behind the development of the present model is that the phase field variable ¢
introduced allows to describe the transition layer between single-phase states independently of the other physical
properties. We consider that ¢ is introduced for purely numerical reasons and its role must therefore be compared
to the indicator or color functions classically used in numerical methods based on sharp interface models (such as
front-tracking, level-set or VOF cf. their presentation in sections 2.1.2 ). This color function takes specified and
arbitrary values in the single-phase domains (where the fluid is in an homogeneous thermodynamically stable
state).

Let us now consider the ability to describe single-phase states in phase field models. Since the value of ¢ is
not in itself physically meaningful, the most simple and easy to handle interpretation of its value is the following:
a particular value for ¢ is associated to each single-phase state. The scaling of ¢ is thus arbitrary and this variable
is not meant to have any variation in single-phase states. Let us set

¢ =0 < liquid phase

¢=1 < vapor phase

The intermediate values of ¢ are not meant to refer to a mix between liquid and vapor but rather to states located
inside the transition layer between single-phase domains (namely the diffuse interface). The thermodynamic
description of the corresponding states is thus chosen adequately with the desired structure of the interface. The
dependence of the thermodynamic potentials out of ¢ = 0 and ¢ = 1 (interpolation of the material properties
between the bulk with the help of the ¢ variable) is thus dictated by this consideration.

As a consequence, the constitutive form for g must lead to classical EOS for ¢ € {0; 1} and to a controlled
interface structure for ¢ € [0 : 1]. Let us consider the single phase states to be described by the specific Gibbs
free energies gyupor (P, T) and gjiquia(P, T). We can introduce an intuitive pre-supposed form for the specific Gibbs
free enthalpy g as

g = V(()D) (gvupor(R T) - gliquid(R T)) + gliquid(Pa T) + gm(go) + (D(‘P) (VQD)Z (313)

where v is the interpolation function introduced in section 2.3.1 and g,, is zero in the liquid and vapor bulk phases
(¢ € {0; 1}) and, together with ®(y), is mainly devoted to the model of the structure of the transition layer.

3.2.2 Gibbs-Duhem stability criterion
Derivation of the equilibrium equations

In this section we study the thermodynamic stability of equilibrium states and derive the equilibrium relations
corresponding to our phase field model. These equilibrium relations will then be used in the following sections
to express analytically the list of constraints for the phase field model defined on page 53.
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Figure 3.5: Thermodynamic system

Let us consider the equilibrium of a closed and isolated system Q of fixed boundary 0Q2. Therefore neither
exchange of energy (through work or heat transfer) nor of mass are considered through the boundary Q. The
Gibbs-Duhem criterion of stability states that the corresponding entropy of 2 is maximal, e.g. Papon and Leblond
[107]. We propose to derive here the equilibrium relations using the variation of the total entropy of the system
with respect to local variations ¢ of the main thermodynamic variables (p, S, ¢) around the equilibrium state.
We introduce L; and L, the two Lagrange multipliers associated with the two constraints of conservation of
total internal energy fQ UdV and of total mass fQ pd?V in the volume Q. On the boundary Q2 we introduce an
interaction energy U, which is assumed to depend only on ¢, i.e. on the nature of the phase in contact with the
boundary. The introduction of this interaction energy is justified by the derivation of the governing dynamical
equations using variational principles in section 5.1. The variation of entropy around the equilibrium state of a
closed and isolated system reads thus

oS = 6f S+LU +L2p)d(v+6f (Ly Up)dA (3.14)
Q aQ

where S = ps is the entropy per unit volume. Since § is locally maximal around a stable equilibrium state, for
any variation, the following relation are satisfied

{ 65=0 (3.15)

52S8S<0

The first condition is the equilibrium condition of the state considered. Second order expansion provides the
stability conditions of this equilibrium state. Stability of the homogeneous states is studied in section 3.2.3 in
the simple case of the neglect of any non-local dependence (® = 0) and from the complete set of governing
equations in chapter 6.

Equilibrium condition Let us study the equilibrium condition
08 =0 (3.16)
Using the definition (3.12) of the energy U, we can write
oU =udp+pdu (3.17)
and using the definition (3.11) of u
oU =(g—Pv)op+pd(g— Pv)+ T 6(ps) + psoT (3.18)
The definition (3.9) of the partial derivatives of g yields
69 = v6P — 5T + g + ® 6 (Vg)? (3.19)

Since vdp = —pdv, we have

5
v6P = 5(Pv) — “F
P
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Multiplying by p the variation (3.19) of g and using the above relation yields the following relation between the
different variations
—Pvép +pd(g — Pv)+ psoT = p(,u op + @5(V¢p)2)

And thus, using the above relation, the variation (3.18) of U reads
U = gop +p (o + @5 (Vo)) + T 8(ps) (3.20)

Let us link the variation of the non local field (V¢)? to the variation of ¢. The variation of the norm of V¢ can be

expanded as
5(Vp)? =2V .6V (3.21)

The operator ¢ and V commute, therefore the LHS of the above equation can be rewritten as
2V .6V =2V .V(6p)
For any scalar a and vector b fields, the following identity holds
V-(ab)=aV-b+Va- b (3.22)
Using this relation with a = 6¢ and b= Vo yields for the variation (3.21) of (Vo)?
§(Vp)> = 2V-(6¢Ve) -2V - (Vo) by (3.23)

This relation implies that although ¢ and (Vg)? can be considered as two independent thermodynamic variable,
their evolution during a transformation ¢ are related. Let us now rewrite the term of the variation (3.20) of internal
energy 0 U involving this non local contribution variation

pD S (V)2 =2p® (V- (5pVe) -V - (V) 5¢) (3.24)
Using the identity (3.22) for the first term of the right hand side yields
p® 5 (Vo) =2 (V- (0@ 5¢ Vo) = V (p D) - (5pV) — p® V - (Vo) 6¢p) (3.25)

The variation of the entropy of Q under the energy and mass conservation constraints (3.16) can be expressed
using the relations (3.20) and (3.25), uniquely in terms of variation with respect to S, p and ¢. It reads

f [(Li T + 1) 6S + (L2 + L1g) 6p] dV
Q

+f [Lip(u=2DAp —20V(p®) - V)] 5o dV
Q

du
+f L1(2ﬁ-(p(DV<p)+—b opdA = 0
90 do

where 77 is the local normal to dQ and where we have used the divergence theorem. So since equation (3.14)
must be satisfied for any variation of the independent thermodynamic variable (S, ¢, p)

1+L,T = 0 (3.26a)
(La+Lig) = 0 (3.26b)
Lip(u—2®Ap—20V(pd)-Vo) = 0 (3.26¢)
d
L (ZpCD i.Vy + %) = Oon 0Q (3.26d)
¥

Let us denote fi the variational derivative of the specific Gibbs free energy with respect to ¢ (cf. the definition (2.9)
of the variational derivative)
16G
pop
ldpg
p S
0 1 0
R
= u-20Ap-20V(pDd)- Vg (3.27)

=
>

such that the equilibrium relation (3.26¢) reads fi = 0. Thus at equilibrium
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* the specific Gibbs free energy ¢ is uniform
* the temperature 7T is uniform,

* and the quantity f is zero.

Local equilibrium relations The equilibrium conditions inside the domain read

VT =0 (3.28a)
Vg=0 (3.28b)
a=0 (3.28¢c)
On the boundary of the domain, at equilibrium
du
(2 oD iV + —b) =0 (3.29)
dg

The equilibrium relation (3.28b) is non-conventional but can be related to the classical hydrostatic equilibrium
relation. As it will be studied in chapter 5, in presence of capillarity, the stress tensor is not spherical, and, at
equilibrium, the pressure is not uniform.

Comparison with the classical two-phase equilibrium conditions The classical multi-phase Gibbs relations
for a planar interface at equilibrium are the equalities of (e.g. [107])

* the temperature on each side of the interface
* the pressure on each side of the interface
* the specific Gibbs free energy on each side of the interface

As a consequence our equilibrium relations a priori differs from the classical about the equality of pressure. If
the multi-phase fluid is described by a single energy functional using classical variables (i.e. without ¢). Let
us remark that thus the uniformity of g implies the uniformity of the pressure P since the Gibbs free energy g
"reduces” to a function of (P, T'). This does not correspond a priori to our own case where only the uniformity of
g is recovered. However, if the phase field single-phase states correspond actually to classical single phase states
(control of the EOS), the equality of pressure across a planar interface is recovered.

The thermodynamic equilibrium relation (3.28c) is additional with respect to conventional. It is actually
related to ¢ variations.

The equilibrium conditions (3.28) are used to ensure that the ¢ values 0 and 1 effectively correspond to
thermodynamically stable single-phase states in the following.

Boundary conditions We only briefly comment here the equilibrium boundary condition (3.29) which is stud-
ied in more details in section 5.1.2. If the interaction energy U; does not depend on ¢, the equilibrium boundary
condition (3.29) yields

n-Vo=0

which corresponds to a static contact angle (angle between the interface and the boundary) of 7/2. Otherwise the
contact angle is different from 7/2 and therefore express a specific affinity (i.e. for example U(0) < Up(1)) of
the boundary dQ with respect to one of the bulk phase.

Conclusion on the derivation of the general expression for the equilibrium relations We have therefore
derived the equilibrium relations of a fluid described with the help of a phase field specific Gibbs free energy
gP,T,q, (Vgo)z). In addition to the classical sharp interface equilibrium relations, the nullity of the variational
derivative i of g with respect to ¢ is satisfie